Exemplo n.º 1
0
def run_island(i):
    class Problem:
        def __init__(self, evaluator, lb, ub):
            from .utils import expect, check_vector
            # type: (Evaluator, array, array) -> None
            '''
            Inits the problem with an objective evaluator
            (implementing the method evaluate), the parameter
            vector lower bound (a numpy array) and upper bound.
            Both bounds must have the same dimension.
            '''
            check_vector(lb)
            check_vector(ub)
            expect(len(lb) == len(ub), 'Bounds mismatch')
            self.evaluator = evaluator
            self.lb = lb
            self.ub = ub

        def fitness(self, x):
            return evaluator.evaluate(x)

        def get_bounds(self):
            return (lb,ub)

        def get_name(self):
            return 'Sabaody udp'

        def get_extra_info(self):
            return 'Sabaody extra info'

    import pygmo as pg
    from multiprocessing import cpu_count
    from b2problem import B2Problem
    from params import getDefaultParamValues, getLowerBound, getUpperBound
    from pymemcache.client.base import Client
    mc_client = Client((i.mc_host,i.mc_port))
    #udp = i.problem_factory()

    algorithm = pg.algorithm(pg.de())
    problem = pg.problem(Problem(B2Problem(i.problem_factory), getLowerBound(), getUpperBound()))
    # TODO: configure pop size
    #a = pg.archipelago(n=cpu_count,algo=algorithm, prob=problem, pop_size=100)

    mc_client.set(i.domain_qualifier('island', str(i.id), 'status'), 'Running', 10000)
    mc_client.set(i.domain_qualifier('island', str(i.id), 'n_cores'), str(cpu_count()), 10000)
    print('Starting island {} with {} cpus'.format(str(i.id), str(cpu_count())))

    #a.evolve(100)

    return 0
Exemplo n.º 2
0
def benchmark_differential_evolution(generations):
    island = pg_island(
        algo=de(gen=generations),
        prob=B2_UDP(getLowerBound(),getUpperBound(),'../../../../../sbml/b2.xml'),
        size=10)

    N = 50
    import arrow
    time_start = arrow.utcnow()
    print('Differential Evolution (pop. size {})'.format(island.get_population().get_f().size))
    for k in range(N):
        island.evolve()
        island.wait()
        delta_t = arrow.utcnow() - time_start
        print('DE {:2}/{}: best fitness {:9.2f}, fevals {}, duration {}'.format(
            k,N,float(island.get_population().champion_f[0]),
            island.get_population().problem.get_fevals(),
            delta_t))
Exemplo n.º 3
0
def benchmark_simulated_annealing():
    island = pg_island(
        algo=simulated_annealing(Ts=1.,Tf=.01),
        prob=problem(B2_UDP(getLowerBound(),getUpperBound(),'../../../../../sbml/b2.xml')),
        size=10)

    N = 10
    import arrow
    time_start = arrow.utcnow()
    print('Simulated Annealing (pop. size {})'.format(island.get_population().get_f().size))
    for k in range(N):
        island.evolve()
        island.wait()
        delta_t = arrow.utcnow() - time_start
        print('SA {:2}/{}: best fitness {:9.2f}, fevals {}, duration {}'.format(
            k,N,float(island.get_population().champion_f[0]),
            island.get_population().problem.get_fevals(),
            delta_t))
Exemplo n.º 4
0
def make_problem():
    class B2_UDP:
        def __init__(self, lb, ub):
            # type: (Evaluator, array, array) -> None
            '''
            Inits the problem with an objective evaluator
            (implementing the method evaluate), the parameter
            vector lower bound (a numpy array) and upper bound.
            Both bounds must have the same dimension.
            '''
            from sabaody.utils import check_vector, expect
            check_vector(lb)
            check_vector(ub)
            expect(len(lb) == len(ub), 'Bounds mismatch')
            self.lb = lb
            self.ub = ub
            from b2problem import B2Problem
            self.evaluator = B2Problem('b2.xml')

        def fitness(self, x):
            return (self.evaluator.evaluate(x),)

        def get_bounds(self):
            return (self.lb,self.ub)

        def get_name(self):
            return 'Sabaody udp'

        def get_extra_info(self):
            return 'Sabaody extra info'

        def __getstate__(self):
            return {
              'lb': self.lb,
              'ub': self.ub}

        def __setstate__(self, state):
            self.lb = state['lb']
            self.ub = state['ub']
            from b2problem import B2Problem
            self.evaluator = B2Problem('b2.xml')

    import pygmo as pg
    return pg.problem(B2_UDP(getLowerBound(),getUpperBound()))
Exemplo n.º 5
0
def run_island(id):
    class B2_UDP:
        def __init__(self, lb, ub):
            # type: (Evaluator, array, array) -> None
            '''
            Inits the problem with an objective evaluator
            (implementing the method evaluate), the parameter
            vector lower bound (a numpy array) and upper bound.
            Both bounds must have the same dimension.
            '''
            from sabaody.utils import check_vector, expect
            check_vector(lb)
            check_vector(ub)
            expect(len(lb) == len(ub), 'Bounds mismatch')
            self.lb = lb
            self.ub = ub
            from b2problem import B2Problem
            self.evaluator = B2Problem('b2.xml')

        def fitness(self, x):
            return (self.evaluator.evaluate(x), )

        def get_bounds(self):
            return (self.lb, self.ub)

        def get_name(self):
            return 'Sabaody udp'

        def get_extra_info(self):
            return 'Sabaody extra info'

        def __getstate__(self):
            return {'lb': self.lb, 'ub': self.ub}

        def __setstate__(self, state):
            self.lb = state['lb']
            self.ub = state['ub']
            from b2problem import B2Problem
            self.evaluator = B2Problem('b2.xml')

    import pygmo as pg
    from pymemcache.client.base import Client
    mc_client = Client(('luna', 11211))

    algorithm = pg.algorithm(pg.de(gen=1000))
    from params import getLowerBound, getUpperBound
    problem = pg.problem(B2_UDP(getLowerBound(), getUpperBound()))
    i = pg.island(algo=algorithm, prob=problem, size=20)

    #mc_client.set(id.domain_qualifier('island', str(id), 'status'), 'Running', 10000)

    i.evolve()
    i.wait()

    import socket
    hostname = socket.gethostname()
    ip = [
        l for l in ([
            ip for ip in socket.gethostbyname_ex(socket.gethostname())[2]
            if not ip.startswith("127.")
        ][:1], [[(s.connect(('8.8.8.8', 53)), s.getsockname()[0], s.close())
                 for s in [socket.socket(socket.AF_INET, socket.SOCK_DGRAM)]
                 ][0][1]]) if l
    ][0][0]
    return (ip, hostname)
Exemplo n.º 6
0
def get_udp(validation_mode, n):
    if not validation_mode:
        return B4_UDP(getLowerBound(), getUpperBound())
    else:
        raise RuntimeError('No validation')
Exemplo n.º 7
0
from b2problem_validator import B2Validator_UDP

import arrow
from scipy.optimize import differential_evolution
from pprint import pprint

# make sure the database and table are ready before we do anything
table = 'scipy_de_solo_runs'
create_solo_benchmark_table(
    host='luna',
    user='******',
    database='sabaody',
    password='******',
    table=table)

problem = B2Validator_UDP(getLowerBound(),getUpperBound(),'../../../../../sbml/b2.xml')

print('initial score: {}'.format(problem.fitness(getDefaultParamValues())[0]))

time_start = arrow.utcnow()

N = 1000
r = differential_evolution(
    func=lambda x: float(problem.fitness(x)[0]),
    bounds=[(lb,ub) for lb,ub in zip(getLowerBound(),getUpperBound())],
    maxiter=N)

time_end = arrow.utcnow()

print('final score: {}'.format(problem.fitness(r.x)[0]))
print('max iterations: {}'.format(N))
Exemplo n.º 8
0
def get_udp(validation_mode, n):
    if not validation_mode:
        return B2_UDP(getLowerBound(), getUpperBound())
    else:
        return B2Validator_UDP(getLowerBound(), getUpperBound(), n=n)