def trainData(): target = list() input = ps.parse() featWrds = loadFeatureFromFile('tester.txt') twtCounter = 0 x = list() for tweet in input: twtCounter = twtCounter + 1 target.append(tweet.pop(-1)) featNum = [] counter = 0 for wrd in featWrds: if wrd in tweet: featNum.append(1) else: featNum.append(0) counter = counter + 1 x.append(featNum) #print x model.fit(x, target) givenAnswer = model.predict(x) listToSum = abs(givenAnswer - target) print sum(givenAnswer) print twtCounter
def onlyOnInit(): st = LancasterStemmer() yes = dict() no = dict() (yes,no) = loadWordsFromFile('tester.txt') valText = ps.parse() stemmedWordList = [] #for each tweet, manipulate dictionary (part of training) for row in valText: #pop V bit from end of row V = row.pop(-1) filtered_words = [w for w in row if not w in stopwords.words('english')] #print "stemmed" + str([w for w in row if w in stopwords.words('english')]) for word in filtered_words: #if the key does not exist in the dictionary, add it with 1 weight try: prevWord = word word = st.stem(str(word)) word = str(word) if yes.get(word, 'none') == 'none': if(V==1): yes[word] = 1 no[word] = 0 else: yes[word] = 0 no[word] = 1 else: if(V==1): yes[word] += 1 #print words[word] else: no[word] += 1 except: print "Exception " + str(prevWord) storeWordsToFile(yes, no,'tester.txt')
import motor import threading import subprocess import random import time import os import parseFile import xlsxwriter import openpyxl from openpyxl.chart import * import serial define("port", default=8000, help="run on the given port", type=int) cwd = os.getcwd() # used by static file server print("Current Working directory :" + cwd) parseFile.parse() temperature = [] light = [] voltage = [] current = [] timestamp = [] class IndexPageHandler(RequestHandler): """ index page """ @gen.coroutine def get(self, *args, **kwargs): self.set_header('Content-Type', 'html') self.set_header("Access-Control-Allow-Origin", "*")