Exemplo n.º 1
0
    def run(self, function, w):
        """Apply the algorithm to minimise function, starting at the positions
        of the vectors in the list w.

        Parameters
        ----------
        function : MultiblockFunction
            The function to minimise.

        w : list of numpy arrays
            Each element of the list is the parameter vector corresponding to a
            block.
        """
        # Not ok until the end.
        if self.info_requested(Info.ok):
            self.info_set(Info.ok, False)

        # Initialise info variables. Info variables have the prefix "_".
        if self.info_requested(Info.time):
            _t = []
        if self.info_requested(Info.func_val):
            _f = []
        if self.info_requested(Info.converged):
            self.info_set(Info.converged, False)

        w_old = [0] * len(w)
        it = 0
        while True:

            for i in range(len(w)):

                # Wrap a function around the ith block:
                func = mb_losses.MultiblockFunctionWrapper(function, w, i)
                if hasattr(function, "at_point"):

                    def new_at_point(self, w):
                        return function.at_point(self.w[:self.index] + [w] +
                                                 self.w[self.index + 1:])

                    import types
                    func.at_point = types.MethodType(new_at_point, func)

                w_old[i] = w[i]
                self.algorithm.reset()
                w[i] = self.algorithm.run(func, w_old[i])

                # Store info from algorithm:
                if self.info_requested(Info.time):
                    time = self.algorithm.info_get(Info.time)
                    _t.extend(time)
                if self.info_requested(Info.func_val):
                    func_val = self.algorithm.info_get(Info.func_val)
                    _f.extend(func_val)

                # Update iteration counts.
                self.num_iter += self.algorithm.num_iter

            # Test global stopping criterion.
            all_converged = True
            for i in range(len(w)):

                # Wrap a function around the ith block.
                func = mb_losses.MultiblockFunctionWrapper(function, w, i)

                # Test if converged for block i.
                if maths.norm(w[i] - w_old[i]) > self.eps:
                    all_converged = False
                    break

            # Converged in all blocks!
            if all_converged:
                if self.info_requested(Info.converged):
                    self.info_set(Info.converged, True)

                break

            # Stop after maximum number of iterations.
            if self.num_iter >= self.max_iter:
                break

            it += 1

        # Store information.
        if self.info_requested(Info.num_iter):
            self.info_set(Info.num_iter, self.num_iter)
        if self.info_requested(Info.time):
            self.info_set(Info.time, _t)
        if self.info_requested(Info.func_val):
            self.info_set(Info.func_val, _f)
        if self.info_requested(Info.ok):
            self.info_set(Info.ok, True)

        return w
Exemplo n.º 2
0
    def run(self, function, w):

        #        self.info.clear()

        if self.info_requested(Info.ok):
            self.info_set(Info.ok, False)
        if self.info_requested(Info.time):
            t = []
        if self.info_requested(Info.fvalue):
            f = []
        if self.info_requested(Info.converged):
            self.info_set(Info.converged, False)

#        print "len(w):", len(w)
#        print "max_iter:", self.max_iter

        num_iter = [0] * len(w)

        for it in range(1, self.outer_iter + 1):

            all_converged = True

            for i in range(len(w)):
                #                print "it: %d, i: %d" % (it, i)

                if function.has_nesterov_function(i):
                    #                    print "Block %d has a Nesterov function!" % (i,)
                    func = mb_losses.MultiblockNesterovFunctionWrapper(
                        function, w, i)
                    algorithm = self.conesta
                else:
                    func = mb_losses.MultiblockFunctionWrapper(function, w, i)
                    algorithm = self.fista

#                self.alg_info.clear()
#                self.algorithm.set_params(max_iter=self.max_iter - num_iter[i])
#                w[i] = self.algorithm.run(func, w_old[i])
                if i == 1:
                    pass
                w[i] = algorithm.run(func, w[i])

                if algorithm.info_requested(Info.num_iter):
                    num_iter[i] += algorithm.info_get(Info.num_iter)
                if algorithm.info_requested(Info.time):
                    tval = algorithm.info_get(Info.time)
                if algorithm.info_requested(Info.fvalue):
                    fval = algorithm.info_get(Info.fvalue)

                if self.info_requested(Info.time):
                    t = t + tval
                if self.info_requested(Info.fvalue):
                    f = f + fval

#                print "l0 :", maths.norm0(w[i]), \
#                    ", l1 :", maths.norm1(w[i]), \
#                    ", l2²:", maths.norm(w[i]) ** 2.0

#            print "f:", fval[-1]

            for i in range(len(w)):

                # Take one ISTA step for use in the stopping criterion.
                step = function.step(w, i)
                w_tilde = function.prox(
                    w[:i] + [w[i] - step * function.grad(w, i)] + w[i + 1:], i,
                    step)

                #                func = mb_losses.MultiblockFunctionWrapper(function, w, i)
                #                step2 = func.step(w[i])
                #                w_tilde2 = func.prox(w[i] - step2 * func.grad(w[i]), step2)
                #
                #                print "diff:", maths.norm(w_tilde - w_tilde2)

                #                print "err:", maths.norm(w[i] - w_tilde) * (1.0 / step)
                if (1.0 / step) * maths.norm(w[i] - w_tilde) > self.eps:
                    all_converged = False
                    break

            if all_converged:
                #                print "All converged!"

                if self.info_requested(Info.converged):
                    self.info_set(Info.converged, True)

                break


#            # If all blocks have used max_iter iterations, stop.
#            if np.all(np.asarray(num_iter) >= self.max_iter):
#                break

#            it += 1

        if self.info_requested(Info.num_iter):
            self.info_set(Info.num_iter, num_iter)
        if self.info_requested(Info.time):
            self.info_set(Info.time, t)
        if self.info_requested(Info.fvalue):
            self.info_set(Info.fvalue, f)
        if self.info_requested(Info.ok):
            self.info_set(Info.ok, True)

        return w
Exemplo n.º 3
0
    def run(self, function, w):
        """Apply the algorithm to minimise function, starting at the positions
        of the vectors in the list w.

        Parameters
        ----------
        function : MultiblockFunction
            The function to minimise.

        w : list of numpy arrays
            Each element of the list is the parameter vector corresponding to a
            block.
        """
        # Not ok until the end.
        if self.info_requested(Info.ok):
            self.info_set(Info.ok, False)

        # Initialise info variables. Info variables have the prefix "_".
        if self.info_requested(Info.time):
            _t = []
        if self.info_requested(Info.func_val):
            _f = []
        if self.info_requested(Info.other):
            _other = dict()
        if self.info_requested(Info.converged):
            self.info_set(Info.converged, False)

        w_old = [0] * len(w)
        it = 0
        while True:

            for i in range(len(w)):

                if self.info_requested(Info.time):
                    tm = utils.time()

                # Wrap a function around the ith block:
                func = mb_losses.MultiblockFunctionWrapper(function, w, i)
                if hasattr(function, "at_point"):
                    def new_at_point(self, w):
                        return self.function.at_point(self.w[:self.index] +
                                                      [w] +
                                                      self.w[self.index + 1:])

                    func.at_point = types.MethodType(new_at_point, func)

                w_old[i] = w[i]
                self.algorithm.reset()
                func.at_point(w_old[i])
                w[i] = self.algorithm.run(func, w_old[i])

                # Store info from algorithm:
                if self.info_requested(Info.time):
                    # time = self.algorithm.info_get(Info.time)
                    time = utils.time() - tm
                    _t.append(time)
                if self.info_requested(Info.func_val):
                    # func_val = self.algorithm.info_get(Info.func_val)
                    func.at_point(w[i])
#                    func_val = func.f(w[i])
                    func_val = function.f(w)
                    _f.append(func_val)

                    if len(_f) > 2 and _f[-2] < _f[-1]:
                        print("w00t!! "
                              + str(function.f(w_old))
                              + " "
                              + str(function.f(w)))

                if self.info_requested(Info.other):
                    nfo = self.algorithm.info_get()
                    for key in nfo.keys():
#                        if key == Info.time:
#                            continue
#                        if key == Info.func_val:
#                            continue

                        if key not in _other:
                            _other[key] = list()

                        value = nfo[key]
                        _other[key].append(value)

                # Update iteration counts.
                self.num_iter += self.algorithm.num_iter

            # Test global stopping criterion.
            all_converged = True
            for i in range(len(w)):

                # Wrap a function around the ith block.
                func = mb_losses.MultiblockFunctionWrapper(function, w, i)

                # Test if converged for block i.
                if maths.norm(w[i] - w_old[i]) > self.eps:
                    all_converged = False
                    break

            # Converged in all blocks!
            if all_converged:
                if self.info_requested(Info.converged):
                    self.info_set(Info.converged, True)

                break

            # Stop after maximum number of iterations.
            if self.num_iter >= self.max_iter:
                break

            it += 1

        # Store information.
        if self.info_requested(Info.num_iter):
            self.info_set(Info.num_iter, self.num_iter)
        if self.info_requested(Info.time):
            self.info_set(Info.time, _t)
        if self.info_requested(Info.func_val):
            self.info_set(Info.func_val, _f)
        if self.info_requested(Info.other):
            self.info_set(Info.other, _other)
        if self.info_requested(Info.ok):
            self.info_set(Info.ok, True)

        return w
Exemplo n.º 4
0
    def run(self, function, w):

        # Not ok until the end.
        if self.info_requested(Info.ok):
            self.info_set(Info.ok, False)

        # Initialise info variables. Info variables have the prefix "_".
        if self.info_requested(Info.time):
            _t = []
        if self.info_requested(Info.func_val):
            _f = []
        if self.info_requested(Info.smooth_func_val):
            _fmu = []
        if self.info_requested(Info.converged):
            self.info_set(Info.converged, False)

        FISTA = True
        if FISTA:
            exp = 4.0 + consts.FLOAT_EPSILON
        else:
            exp = 2.0 + consts.FLOAT_EPSILON
        block_iter = [1] * len(w)

        it = 0
        while True:

            for i in range(len(w)):
                #                print "it: %d, i: %d" % (it, i)

                #                if True:
                #                    pass

                # Wrap a function around the ith block.
                func = mb_losses.MultiblockFunctionWrapper(function, w, i)

                # Run FISTA.
                w_old = w[i]
                for k in range(
                        1,
                        max(self.min_iter + 1,
                            self.max_iter - self.num_iter + 1)):

                    if self.info_requested(Info.time):
                        time = utils.time_wall()

                    if FISTA:
                        # Take an interpolated step.
                        z = w[i] + ((k - 2.0) / (k + 1.0)) * (w[i] - w_old)
                    else:
                        z = w[i]

                    # Compute the step.
                    step = func.step(z)
                    # Compute inexact precision.
                    eps = max(consts.FLOAT_EPSILON, 1.0 / (block_iter[i]**exp))
                    #                    eps = consts.TOLERANCE

                    w_old = w[i]
                    # Take a FISTA step.
                    w[i] = func.prox(z - step * func.grad(z),
                                     factor=step,
                                     eps=eps)

                    # Store info variables.
                    if self.info_requested(Info.time):
                        _t.append(utils.time_wall() - time)
                    if self.info_requested(Info.func_val):
                        _f.append(function.f(w))
                    if self.info_requested(Info.smooth_func_val):
                        _fmu.append(function.fmu(w))

                    # Update iteration counts.
                    self.num_iter += 1
                    block_iter[i] += 1

                    #                    print i, function.fmu(w), step, \
                    #                           (1.0 / step) * maths.norm(w[i] - z), self.eps, \
                    #                           k, self.num_iter, self.max_iter
                    # Test stopping criterion.
                    if maths.norm(w[i] - z) < step * self.eps \
                            and k >= self.min_iter:
                        break

            # Test global stopping criterion.
            all_converged = True
            for i in range(len(w)):

                # Wrap a function around the ith block.
                func = mb_losses.MultiblockFunctionWrapper(function, w, i)

                # Compute the step.
                step = func.step(w[i])
                # Compute inexact precision.
                eps = max(consts.FLOAT_EPSILON, 1.0 / (block_iter[i]**exp))
                #                eps = consts.TOLERANCE
                # Take one ISTA step for use in the stopping criterion.
                w_tilde = func.prox(w[i] - step * func.grad(w[i]),
                                    factor=step,
                                    eps=eps)

                # Test if converged for block i.
                if maths.norm(w[i] - w_tilde) > step * self.eps:
                    all_converged = False
                    break

            # Converged in all blocks!
            if all_converged:
                if self.info_requested(Info.converged):
                    self.info_set(Info.converged, True)

                break

            # Stop after maximum number of iterations.
            if self.num_iter >= self.max_iter:
                break

            it += 1

        # Store information.
        if self.info_requested(Info.num_iter):
            self.info_set(Info.num_iter, self.num_iter)
        if self.info_requested(Info.time):
            self.info_set(Info.time, _t)
        if self.info_requested(Info.func_val):
            self.info_set(Info.func_val, _f)
        if self.info_requested(Info.smooth_func_val):
            self.info_set(Info.smooth_func_val, _fmu)
        if self.info_requested(Info.ok):
            self.info_set(Info.ok, True)

        return w
Exemplo n.º 5
0
    def run(self, function, w):

        # Not ok until the end.
        if self.info_requested(Info.ok):
            self.info_set(Info.ok, False)

        # Initialise info variables. Info variables have the prefix "_".
        if self.info_requested(Info.time):
            _t = []
        if self.info_requested(Info.func_val):
            _f = []
        if self.info_requested(Info.smooth_func_val):
            _fmu = []
        if self.info_requested(Info.converged):
            self.info_set(Info.converged, False)

        for i in range(len(w)):  # For each block.
            # Store info variables.
            if self.info_requested(Info.time):
                time = utils.time_wall()
            if self.info_requested(Info.func_val):
                _f.append(function.f(w))
            if self.info_requested(Info.smooth_func_val):
                _fmu.append(function.fmu(w))
            if self.info_requested(Info.time):
                _t.append(utils.time_wall() - time)

        exp = 2.0 + consts.FLOAT_EPSILON
        block_iter = [1] * len(w)

        it = 0
        while True:

            for i in range(len(w)):  # Loop over the blocks

                # Wrap a function around the ith block.
                func = mb_losses.MultiblockFunctionWrapper(function, w, i)

                # Run ISTA.
                for k in range(1, max(self.min_iter + 1,
                                      self.max_iter - self.num_iter + 1)):

                    if self.info_requested(Info.time):
                        time = utils.time_wall()

                    # Compute the step.
                    step = func.step(w[i])
                    # Compute inexact precision.
                    eps = max(consts.FLOAT_EPSILON,
                              1.0 / (block_iter[i] ** exp))

                    w_old = w[i]
                    # Take an ISTA step.
                    w[i] = func.prox(w[i] - step * func.grad(w[i]),
                                     factor=step, eps=eps)

                    # Store info variables.
                    if self.info_requested(Info.time):
                        _t.append(utils.time_wall() - time)
                    if self.info_requested(Info.func_val):
                        _f.append(function.f(w))
                    if self.info_requested(Info.smooth_func_val):
                        _fmu.append(function.fmu(w))

                    # Update iteration counts.
                    self.num_iter += 1
                    block_iter[i] += 1

                    # Test stopping criterion.
                    if maths.norm(w[i] - w_old) < step * self.eps \
                            and k >= self.min_iter:
                        break

            # Test global stopping criterion.
            all_converged = True
            for i in range(len(w)):

                # Wrap a function around the ith block.
                func = mb_losses.MultiblockFunctionWrapper(function, w, i)

                # Compute the step.
                step = func.step(w[i])
                # Compute inexact precision.
                eps = max(consts.FLOAT_EPSILON,
                          1.0 / (block_iter[i] ** exp))

                # Take one ISTA step for use in the stopping criterion.
                w_tilde = func.prox(w[i] - step * func.grad(w[i]),
                                    factor=step, eps=eps)
                # TODO: Use this step?

                # Test if converged for block i.
                if maths.norm(w[i] - w_tilde) > step * self.eps:
                    all_converged = False
                    break

            # Converged in all blocks!
            if all_converged:
                if self.info_requested(Info.converged):
                    self.info_set(Info.converged, True)

                break

            # Stop after maximum number of iterations.
            if self.num_iter >= self.max_iter:
                break

            it += 1

        # Store information.
        if self.info_requested(Info.num_iter):
            self.info_set(Info.num_iter, self.num_iter)
        if self.info_requested(Info.time):
            self.info_set(Info.time, _t)
        if self.info_requested(Info.func_val):
            self.info_set(Info.func_val, _f)
        if self.info_requested(Info.smooth_func_val):
            self.info_set(Info.smooth_func_val, _fmu)
        if self.info_requested(Info.ok):
            self.info_set(Info.ok, True)

        return w