Exemplo n.º 1
0
    net = tf_utils.fully_connected(y_tilde,
                                   1024,
                                   bn=True,
                                   is_training=is_training,
                                   scope='fc1',
                                   bn_decay=bn_decay)
    net = tf_utils.fully_connected(net,
                                   1024,
                                   bn=True,
                                   is_training=is_training,
                                   scope='fc2',
                                   bn_decay=bn_decay)
    net = tf_utils.fully_connected(net,
                                   2048 * 3,
                                   activation_fn=None,
                                   scope='fc3')
    net = tf.reshape(net, (batch_size, 2048, 3))
    return net


if __name__ == '__main__':
    tf.enable_eager_execution()
    TRAIN_DATASET = part_dataset.PartDataset(
        root='/data/dataset/shapenetcore_partanno_segmentation_benchmark_v0',
        npoints=2048,
        classification=False,
        class_choice=None,
        split='trainval')
    print('=============')
    print(input_fn(TRAIN_DATASET, 2, 8, repeat=True, prefetch_size=6))
Exemplo n.º 2
0
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp train.py %s' % (LOG_DIR)) # bkp of train procedure
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')

BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99

HOSTNAME = socket.gethostname()

# Shapenet official train/test split
#DATA_PATH = os.path.join(BASE_DIR, 'data/shapenetcore_partanno_segmentation_benchmark_v0')
DATA_PATH = '/home/sohee/code/dataset/shapenet/shapenetcore_partanno_segmentation_benchmark_v0'
TRAIN_DATASET = part_dataset.PartDataset(root=DATA_PATH, npoints=NUM_POINT, classification=False, class_choice=FLAGS.category, split='trainval')
TEST_DATASET = part_dataset.PartDataset(root=DATA_PATH, npoints=NUM_POINT, classification=False, class_choice=FLAGS.category, split='test')

def log_string(out_str):
    LOG_FOUT.write(out_str+'\n')
    LOG_FOUT.flush()
    print(out_str)

def get_learning_rate(batch):
    learning_rate = tf.train.exponential_decay(
                        BASE_LEARNING_RATE,  # Base learning rate.
                        batch * BATCH_SIZE,  # Current index into the dataset.
                        DECAY_STEP,          # Decay step.
                        DECAY_RATE,          # Decay rate.
                        staircase=True)
    learing_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
Exemplo n.º 3
0
    type=int,
    default=1,
    help=
    'Number of groups of generated points -- used for hierarchical FC decoder. [default: 1]'
)
FLAGS = parser.parse_args()

MODEL_PATH = FLAGS.model_path
GPU_INDEX = FLAGS.gpu
NUM_POINT = FLAGS.num_point
MODEL = importlib.import_module(FLAGS.model)  # import network module
DATA_PATH = os.path.join(
    BASE_DIR, 'data/shapenetcore_partanno_segmentation_benchmark_v0')
TEST_DATASET = part_dataset.PartDataset(root=DATA_PATH,
                                        npoints=NUM_POINT,
                                        classification=False,
                                        class_choice=FLAGS.category,
                                        split='test',
                                        normalize=True)
print(len(TEST_DATASET))


def get_model(batch_size, num_point):
    with tf.Graph().as_default():
        with tf.device('/gpu:' + str(GPU_INDEX)):
            pointclouds_pl, labels_pl = MODEL.placeholder_inputs(
                batch_size, num_point)
            is_training_pl = tf.placeholder(tf.bool, shape=())
            pred, end_points = MODEL.get_model(pointclouds_pl, is_training_pl)
            loss = MODEL.get_loss(pred, labels_pl, end_points)
            saver = tf.train.Saver()
        # Create a session