Exemplo n.º 1
0
def make_assignment_mode_example():
    # create a midi file on which to test the assignment modes in load_midi
    part_1 = score.Part('P1')
    part_2 = score.Part('P2')
    part_3 = score.Part('P3')

    part_1.set_quarter_duration(0, 1)
    part_2.set_quarter_duration(0, 2)
    part_3.set_quarter_duration(0, 3)

    part_1.add(score.TimeSignature(4, 4), 0)
    part_1.add(score.Note(step='C', octave=4, voice=1), 0, 1)
    part_1.add(score.Note(step='B', octave=4, voice=2), 0, 2)
    part_1.add(score.Note(step='B', octave=4, voice=2), 2, 4)
    part_1.add(score.Note(step='B', octave=4, voice=2), 5, 6)
    part_1.add(score.Note(step='B', octave=4, voice=3), 7, 10)

    part_2.add(score.TimeSignature(4, 4), 0)
    part_2.add(score.Tempo(80), 0)
    part_2.add(score.Note(step='D', octave=5, voice=1), 0, 1)
    part_2.add(score.Note(step='E', octave=5, voice=2), 1, 2)
    part_2.add(score.Note(step='F', octave=5, voice=2), 2, 3)
    part_2.add(score.Note(step='G', octave=5, voice=2), 3, 4)

    part_3.add(score.TimeSignature(4, 4), 0)
    part_3.add(score.Note(step='G', octave=4, voice=1), 0, 3)

    pg = score.PartGroup(group_name='P1/P2')
    pg.children = [part_1, part_2]
    for p in pg.children:
        p.parent = pg

    return [pg, part_3]
Exemplo n.º 2
0
def _parse_partlist(partlist):
    """
    This parses the <part-list> ... </part-list> element in the beginning
    of the MusicXML file where each instrument is declared, instruments and
    their staves are grouped (braces, brackets), etc.

    Parameters
    ----------
    partlist : etree element
        The part-list etree element

    Returns
    -------
    list:
        list of PartGroup objects
    dict:
        Dictionary of pairs (partid, Part) where the Part objects are
        instantiated with part-name and part-abbreviation if these are specified in
        the part list definition.
    """

    structure = []
    current_group = None
    part_dict = {}

    for e in partlist:
        if e.tag == 'part-group':
            if e.get('type') == 'start':

                gr_name = get_value_from_tag(e, 'group-name', str)
                gr_symbol = get_value_from_tag(e, 'group-symbol', str)
                gr_number = get_value_from_attribute(e, 'number', int)
                new_group = score.PartGroup(gr_symbol, gr_name, gr_number)

                if current_group is None:
                    current_group = new_group
                else:
                    current_group.children.append(new_group)
                    new_group.parent = current_group
                    current_group = new_group

            elif e.get('type') == 'stop':
                if current_group.parent is None:
                    structure.append(current_group)
                    current_group = None
                else:
                    current_group = current_group.parent

        elif e.tag == 'score-part':
            part_id = e.get('id')
            part = score.Part(part_id)

            # set part name and abbreviation if available
            part.part_name = next(iter(e.xpath('part-name/text()')), None)
            part.part_abbreviation = next(
                iter(e.xpath('part-abbreviation/text()')), None)

            part_dict[part_id] = part

            if current_group is None:
                structure.append(part)
            else:
                current_group.children.append(part)
                part.parent = current_group

    if current_group is not None:
        LOGGER.warning(
            'part-group {0} was not ended'.format(current_group.number))
        structure.append(current_group)

    return structure, part_dict
Exemplo n.º 3
0
def load_score_midi(fn, part_voice_assign_mode=0, ensure_list=False,
                    quantization_unit=None, estimate_voice_info=True,
                    estimate_key=False, assign_note_ids=True):
    """Load a musical score from a MIDI file and return it as a Part
    instance.

    This function interprets MIDI information as describing a score.
    Pitch names are estimated using Meredith's PS13 algorithm [1]_.
    Assignment of notes to voices can either be done using Chew and
    Wu's voice separation algorithm [2]_, or by choosing one of the
    part/voice assignment modes that assign voices based on
    track/channel information. Furthermore, the key signature can be
    estimated based on Krumhansl's 1990 key profiles [3]_.

    This function expects times to be metrical/quantized. Optionally a
    quantization unit may be specified. If you wish to access the non-
    quantized time of MIDI events you may wish to used the
    `load_performance_midi` function instead.

    Parameters
    ----------
    fn : str
        Path to MIDI file
    part_voice_assign_mode : {0, 1, 2, 3, 4, 5}, optional
        This keyword controls how part and voice information is
        associated to track and channel information in the MIDI file.
        The semantics of the modes is as follows:

        0
            Return one Part per track, with voices assigned by channel
        1
            Return one PartGroup per track, with Parts assigned by channel
            (no voices)
        2
            Return single Part with voices assigned by track (tracks are
            combined, channel info is ignored)
        3
            Return one Part per track, without voices (channel info is
            ignored)
        4
            Return single Part without voices (channel and track info is
            ignored)
        5
            Return one Part per <track, channel> combination, without
            voices  Defaults to 0.
    ensure_list : bool, optional
        When True, return a list independent of how many part or partgroup
        elements were created from the MIDI file. By default, when the
        return value of `load_score_midi` produces a single 
        :class:`partitura.score.Part` or :class:`partitura.score.PartGroup`
        element, the element itself is returned instead of a list
        containing the element. Defaults to False.
    quantization_unit : integer or None, optional
        Quantize MIDI times to multiples of this unit. If None, the
        quantization unit is chosen automatically as the smallest
        division of the parts per quarter (MIDI "ticks") that can be
        represented as a symbolic duration. Defaults to None.
    estimate_key : bool, optional
        When True use Krumhansl's 1990 key profiles [3]_ to determine
        the most likely global key, discarding any key information in
        the MIDI file.
    estimate_voice_info : bool, optional
        When True use Chew and Wu's voice separation algorithm [2]_ to
        estimate voice information. This option is ignored for
        part/voice assignment modes that infer voice information from
        the track/channel info (i.e. `part_voice_assign_mode` equals
        1, 3, 4, or 5). Defaults to True.

    Returns
    -------
    :class:`partitura.score.Part`, :class:`partitura.score.PartGroup`, or a list of these
        One or more part or partgroup objects

    References
    ----------
    .. [1] Meredith, D. (2006). "The ps13 Pitch Spelling Algorithm". Journal 
           of New Music Research, 35(2):121.
    .. [2] Chew, E. and Wu, Xiaodan (2004) "Separating Voices in
           Polyphonic Music: A Contig Mapping Approach". In Uffe Kock, 
           editor, Computer Music Modeling and Retrieval (CMMR), pp. 1–20, 
           Springer Berlin Heidelberg.
    .. [3] Krumhansl, Carol L. (1990) "Cognitive foundations of musical pitch",
           Oxford University Press, New York.

    """
    mid = mido.MidiFile(fn)
    divs = mid.ticks_per_beat

    # these lists will contain information from dedicated tracks for meta
    # information (i.e. without notes)
    global_time_sigs = []
    global_key_sigs = []
    global_tempos = []

    # these dictionaries will contain meta information indexed by track (only
    # for tracks that contain notes)
    time_sigs_by_track = {}
    key_sigs_by_track = {}
    tempos_by_track = {}
    track_names_by_track = {}
    # notes are indexed by (track, channel) tuples
    notes_by_track_ch = {}
    relevant = {'time_signature',
                'key_signature',
                'set_tempo',
                'note_on',
                'note_off'}
    for track_nr, track in enumerate(mid.tracks):
        time_sigs = []
        key_sigs = []
        # tempos = []
        notes = defaultdict(list)
        # dictionary for storing the last onset time and velocity for each
        # individual note (i.e. same pitch and channel)
        sounding_notes = {}
        # current time (will be updated by delta times in messages)
        t_raw = 0

        for msg in track:

            t_raw = t_raw + msg.time

            if msg.type not in relevant:
                continue

            if quantization_unit:
                t = quantize(t_raw, quantization_unit)
            else:
                t = t_raw

            if msg.type == 'time_signature':
                time_sigs.append((t, msg.numerator, msg.denominator))
            if msg.type == 'key_signature':
                key_sigs.append((t, msg.key))
            if msg.type == 'set_tempo':
                global_tempos.append((t, 60*10**6/msg.tempo))
            else:
                note_on = msg.type == 'note_on'
                note_off = msg.type == 'note_off'

                if not (note_on or note_off):
                    continue

                # hash sounding note
                note = note_hash(msg.channel, msg.note)

                # start note if it's a 'note on' event with velocity > 0
                if note_on and msg.velocity > 0:

                    # save the onset time and velocity
                    sounding_notes[note] = (t, msg.velocity)

                # end note if it's a 'note off' event or 'note on' with velocity 0
                elif note_off or (note_on and msg.velocity == 0):

                    if note not in sounding_notes:
                        warnings.warn('ignoring MIDI message %s' % msg)
                        continue

                    # append the note to the list associated with the channel
                    notes[msg.channel].append((sounding_notes[note][0], msg.note, t-sounding_notes[note][0]))
                                              # sounding_notes[note][1]])
                    # remove hash from dict
                    del sounding_notes[note]

        # if a track has no notes, we assume it may contain global time/key sigs
        if not notes:
            global_time_sigs.extend(time_sigs)
            global_key_sigs.extend(key_sigs)
        else:
            # if there are note, we store the info under the track number
            time_sigs_by_track[track_nr] = time_sigs
            key_sigs_by_track[track_nr] = key_sigs
            track_names_by_track[track_nr] = track.name

        for ch, ch_notes in notes.items():
            # if there are any notes, store the notes along with key sig / time
            # sig / tempo information under the key (track_nr, ch_nr)
            if len(ch_notes) > 0:
                notes_by_track_ch[(track_nr, ch)] = ch_notes

    tr_ch_keys = sorted(notes_by_track_ch.keys())
    group_part_voice_keys, part_names, group_names = assign_group_part_voice(
        part_voice_assign_mode,
        tr_ch_keys,
        track_names_by_track)
    
    # for key and time sigs:
    track_to_part_mapping = make_track_to_part_mapping(
        tr_ch_keys,
        group_part_voice_keys)

    # pairs of (part, voice) for each note
    part_voice_list = [[part, voice] for tr_ch, (_, part, voice)
                       in zip(tr_ch_keys, group_part_voice_keys)
                       for i in range(len(notes_by_track_ch[tr_ch]))]

    # pitch spelling, voice estimation and key estimation are done on a
    # structured array (onset, pitch, duration) of all notes in the piece
    # jointly, so we concatenate all notes
    # note_list = sorted(note for notes in (notes_by_track_ch[key] for key in tr_ch_keys) for note in notes)
    note_list = [note for notes in (notes_by_track_ch[key]
                                    for key in tr_ch_keys)
                 for note in notes]
    note_array = np.array(note_list, dtype=[('onset', np.int),
                                            ('pitch', np.int),
                                            ('duration', np.int)])

    LOGGER.debug('pitch spelling')
    spelling_global = analysis.estimate_spelling(note_array)

    if estimate_voice_info:
        LOGGER.debug('voice estimation')
        # TODO: deal with zero duration notes in note_array. Zero duration notes are currently deleted
        estimated_voices = analysis.estimate_voices(note_array)
        assert len(part_voice_list) == len(estimated_voices) 
        for part_voice, voice_est in zip(part_voice_list, estimated_voices):
            if part_voice[1] is None:
                part_voice[1] = voice_est

    if estimate_key:
        LOGGER.debug('key estimation')
        _, mode, fifths = analysis.estimate_key(note_array)
        key_sigs_by_track = {}
        global_key_sigs = [(0, fifths_mode_to_key_name(fifths, mode))]

    if assign_note_ids:
        note_ids = ['n{}'.format(i) for i in range(len(note_array))]
    else:
        note_ids = [None for i in range(len(note_array))]

    time_sigs_by_part = defaultdict(set)
    for tr, ts_list in time_sigs_by_track.items():
        for ts in ts_list:
            for part in track_to_part_mapping[tr]:
                time_sigs_by_part[part].add(ts)
    for ts in global_time_sigs:
        for part in set(part for _, part, _ in group_part_voice_keys):
            time_sigs_by_part[part].add(ts)

    key_sigs_by_part = defaultdict(set)
    for tr, ks_list in key_sigs_by_track.items():
        for ks in ks_list:
            for part in track_to_part_mapping[tr]:
                key_sigs_by_part[part].add(ks)
    for ks in global_key_sigs:
        for part in set(part for _, part, _ in group_part_voice_keys):
            key_sigs_by_part[part].add(ks)

    # names_by_part = defaultdict(set)
    # for tr_ch, pg_p_v in zip(tr_ch_keys, group_part_voice_keys):
    #     print(tr_ch, pg_p_v)
    # for tr, name in track_names_by_track.items():
    #     print(tr, track_to_part_mapping, name)
    #     for part in track_to_part_mapping[tr]:
    #         names_by_part[part] = name

    notes_by_part = defaultdict(list)
    for (part, voice), note, spelling, note_id in zip(part_voice_list,
                                                      note_list,
                                                      spelling_global,
                                                      note_ids):
        notes_by_part[part].append((note, voice, spelling, note_id))

    partlist = []
    part_to_part_group = dict((p, pg) for pg, p, _ in group_part_voice_keys)
    part_groups = {} 
    for part_nr, note_info in notes_by_part.items():
        notes, voices, spellings, note_ids = zip(*note_info)
        part = create_part(divs, notes, spellings, voices, note_ids,
                           sorted(time_sigs_by_part[part_nr]),
                           sorted(key_sigs_by_part[part_nr]),
                           part_id='P{}'.format(part_nr+1),
                           part_name=part_names.get(part_nr, None))

        # print(part.pretty())
        # if this part has an associated part_group number we create a PartGroup
        # if necessary, and add the part to that. The newly created PartGroup is
        # then added to the partlist.
        pg_nr = part_to_part_group[part_nr]
        if pg_nr is None:
            partlist.append(part)
        else:
            if pg_nr not in part_groups:
                part_groups[pg_nr] = score.PartGroup(group_name=group_names.get(pg_nr, None))
                partlist.append(part_groups[pg_nr])
            part_groups[pg_nr].children.append(part)

    # add tempos to first part
    part = next(score.iter_parts(partlist))
    for t, qpm in global_tempos:
        part.add(score.Tempo(qpm, unit='q'), t)

    if not ensure_list and len(partlist) == 1:
        return partlist[0]
    else:
        return partlist