Exemplo n.º 1
0
def test_pick_indices():
    N = 100
    classes = ["foo", "bar"]
    filepaths = [str(x) for x in range(N)]
    df = prep_label_dataframe(filepaths, classes)
    df["foo"].iloc[:int(N/2)] = 1
    
    pred_df = df.copy().drop(["exclude", "filepath", "validation"], 1)
    pred_df["foo"] = np.linspace(0,1,N)
    pred_df["bar"] = np.ones(N)
    
    assert len(pick_indices(df, pred_df, 10, "random", "unlabeled")) == 10
    assert len(pick_indices(df, pred_df, 10, "max entropy", "unlabeled")) == 10
    assert len(pick_indices(df, pred_df, 10, "maxent: foo", "unlabeled")) == 10
    assert len(pick_indices(df, pred_df, 10, 
                            "maxent: bar", "partially labeled")) == 10
    assert len(pick_indices(df, pred_df, 100, "maxent: foo", "unlabeled")) == 50
    
    
    
    
    
    
    
    
    
    
    
Exemplo n.º 2
0
def test_prep_label_dataframe():
    filepaths = ["foo.png", "bar.png", "foobar.png"]
    classes = ["shoe", "biscotti", "punctuality"]
    
    df = prep_label_dataframe(filepaths, classes)
    assert len(df) == 3
    assert "exclude" in df.columns
    assert "shoe" in df.columns
    assert (df["exclude"] == False).sum() == 3
    assert (pd.isnull(df["punctuality"])).sum() == 3
Exemplo n.º 3
0
def test_buttonpanel():
    def _mock_load_func(x):
        """
        randomly generate array instead of loading an image file
        from disk to an array
        """
        return np.random.uniform(0, 1, (256,256, 3))
    
    classes = ["foo", "bar"]
    filepaths = ["foo.jpg", "bar.jpg"]
    df = prep_label_dataframe(filepaths, classes)
    
    bp = ButtonPanel(classes, df, _mock_load_func)
    bp.load(np.array([0]))
    bp.record_values()
Exemplo n.º 4
0
def test_pick_indices():
    N = 100
    classes = ["foo", "bar"]
    filepaths = [str(x) for x in range(N)]
    df = prep_label_dataframe(filepaths, classes)
    foo = np.concatenate([np.ones(int(N / 2)), np.nan * np.zeros(int(N / 2))])
    df = df.assign(foo=foo)

    pred_df = df.copy().drop(["exclude", "filepath", "validation"], 1)
    pred_df = pred_df.assign(foo=np.linspace(0, 1, N))
    pred_df = pred_df.assign(bar=np.ones(N))

    assert len(pick_indices(df, pred_df, 10, "random", "unlabeled")) == 10
    assert len(pick_indices(df, pred_df, 10, "max entropy", "unlabeled")) == 10
    assert len(pick_indices(df, pred_df, 10, "maxent: foo", "unlabeled")) == 10
    assert len(
        pick_indices(df, pred_df, 10, "maxent: bar",
                     "partially labeled")) == 10
    assert len(pick_indices(df, pred_df, 100, "maxent: foo",
                            "unlabeled")) == 50