def find_most_violated_constraint_margin(F, y, model, sparm):
    """Return ybar associated with x's most violated constraint.

    The find most violated constraint function for margin rescaling.
    The default behavior is that this returns the value from the
    general find_most_violated_constraint function."""

    if len(y) != 2:
        raise Exception('y should be a pair (states,orients)')

    data_weights, T = diagonal.unpack_weights(list(model.w))
    states, orients = y
    A = path.compute_loss_augmented_terms(F, data_weights, states, path.L2)
    ybar = diagonal.solve(A, T)

    if len(ybar) != 2:
        raise Exception('ybar should be a pair (states,orients)')

    print '\nFinding most violated constraint'
    print '  w: ', list(model.w)
    print '  data w: ', data_weights
    print '  transition:\n', T
    print '  true y: ', y
    print '  classified ybar: ', ybar
    print '  feature(true y): ', path.compute_path_features(F, y)
    print '  feature(ybar): ', path.compute_path_features(F, ybar)
    print '  loss: ', path.compute_loss(y[0], ybar[0], path.L2)

    return ybar
Exemplo n.º 2
0
def find_most_violated_constraint_margin(problem, gt, model, sparm):
    """Return ybar associated with x's most violated constraint.

    The find most violated constraint function for margin rescaling.
    The default behavior is that this returns the value from the
    general find_most_violated_constraint function."""

    assert(isinstance(problem, manhattan_utils.ManhattanProblem))
    assert(isinstance(gt, manhattan_utils.ManhattanSolution))

    data_weights,T = diagonal.unpack_weights(list(model.w))
    data_terms = path.compute_data_terms(problem.F, data_weights)
    loss_terms = gt.compute_loss_terms(LossFunc)
    A = data_terms + loss_terms
    est_states,est_orients = diagonal.solve(A, T)
    hyp = manhattan_utils.ManhattanSolution(problem, est_states, est_orients)

    print '\nFinding most violated constraint'
    print '  w: ',list(model.w)
    print '  data w: ',data_weights
    print '  transition:\n',T
    print '  true y: ',gt.ys
    print '  classified ybar: ',hyp.ys
    print '  feature(true y): ',path.compute_path_features(problem.F, gt.pair)
    print '  feature(ybar): ',path.compute_path_features(problem.F, hyp.pair)
    print '  loss: ',gt.compute_loss(hyp, LossFunc)

    return hyp
Exemplo n.º 3
0
def find_most_violated_constraint_margin(problem, gt, model, sparm):
    """Return ybar associated with x's most violated constraint.

    The find most violated constraint function for margin rescaling.
    The default behavior is that this returns the value from the
    general find_most_violated_constraint function."""

    assert (isinstance(problem, manhattan_utils.ManhattanProblem))
    assert (isinstance(gt, manhattan_utils.ManhattanSolution))

    data_weights, T = diagonal.unpack_weights(list(model.w))
    data_terms = path.compute_data_terms(problem.F, data_weights)
    loss_terms = gt.compute_loss_terms(LossFunc)
    A = data_terms + loss_terms
    est_states, est_orients = diagonal.solve(A, T)
    hyp = manhattan_utils.ManhattanSolution(problem, est_states, est_orients)

    print '\nFinding most violated constraint'
    print '  w: ', list(model.w)
    print '  data w: ', data_weights
    print '  transition:\n', T
    print '  true y: ', gt.ys
    print '  classified ybar: ', hyp.ys
    print '  feature(true y): ', path.compute_path_features(problem.F, gt.pair)
    print '  feature(ybar): ', path.compute_path_features(problem.F, hyp.pair)
    print '  loss: ', gt.compute_loss(hyp, LossFunc)

    return hyp
def find_most_violated_constraint_margin(F, y, model, sparm):
    """Return ybar associated with x's most violated constraint.

    The find most violated constraint function for margin rescaling.
    The default behavior is that this returns the value from the
    general find_most_violated_constraint function."""

    if len(y) != 2:
        raise Exception('y should be a pair (states,orients)')

    data_weights,T = diagonal.unpack_weights(list(model.w))
    states,orients = y
    A = path.compute_loss_augmented_terms(F, data_weights, states, path.L2)
    ybar = diagonal.solve(A,T)

    if len(ybar) != 2:
        raise Exception('ybar should be a pair (states,orients)')

    print '\nFinding most violated constraint'
    print '  w: ',list(model.w)
    print '  data w: ',data_weights
    print '  transition:\n',T
    print '  true y: ',y
    print '  classified ybar: ',ybar
    print '  feature(true y): ',path.compute_path_features(F,y)
    print '  feature(ybar): ',path.compute_path_features(F,ybar)
    print '  loss: ',path.compute_loss(y[0], ybar[0], path.L2)

    return ybar
Exemplo n.º 5
0
def psi(problem, hyp, model, sparm):
    """Return a feature vector representing pattern x and label y.

    This is the combined feature function, which this returns either a
    svmapi.Sparse object, or sequence of svmapi.Sparse objects (useful
    during kernel evaluations, as all components undergo kernel
    evaluation separately).  There is no default behavior."""

    assert(isinstance(problem, manhattan_utils.ManhattanProblem))
    assert(isinstance(hyp, manhattan_utils.ManhattanSolution))

    return svmapi.Sparse(path.compute_path_features(problem.F, hyp.pair))
Exemplo n.º 6
0
def psi(problem, hyp, model, sparm):
    """Return a feature vector representing pattern x and label y.

    This is the combined feature function, which this returns either a
    svmapi.Sparse object, or sequence of svmapi.Sparse objects (useful
    during kernel evaluations, as all components undergo kernel
    evaluation separately).  There is no default behavior."""

    assert (isinstance(problem, manhattan_utils.ManhattanProblem))
    assert (isinstance(hyp, manhattan_utils.ManhattanSolution))

    return svmapi.Sparse(path.compute_path_features(problem.F, hyp.pair))
def psi(F, y, model, sparm):
    """Return a feature vector representing pattern x and label y.

    This is the combined feature function, which this returns either a
    svmapi.Sparse object, or sequence of svmapi.Sparse objects (useful
    during kernel evaluations, as all components undergo kernel
    evaluation separately).  There is no default behavior."""

    if len(y) != 2:
        raise Exception('y should be a pair (states,orients)')

    return svmapi.Sparse(path.compute_path_features(F, y))
def psi(F, y, model, sparm):
    """Return a feature vector representing pattern x and label y.

    This is the combined feature function, which this returns either a
    svmapi.Sparse object, or sequence of svmapi.Sparse objects (useful
    during kernel evaluations, as all components undergo kernel
    evaluation separately).  There is no default behavior."""

    if len(y) != 2:
        raise Exception('y should be a pair (states,orients)')

    return svmapi.Sparse(path.compute_path_features(F, y))
Exemplo n.º 9
0
def init_model(sample, model, sparm):
    """Initializes the learning model.
    
    Initialize the structure model model.  The model.size_psi must be set to
    the number of features.  The ancillary purpose is to add any
    information to model that is necessary from the user code
    perspective.  This function returns nothing."""

    # The weights are not simple the length of the data features: they
    # also include terms for the transition matrix
    gt_ftr = path.compute_path_features(sample[0][0].F, sample[0][1].pair)
    assert(np.ndim(gt_ftr) == 1)

    model.size_psi = len(gt_ftr)
Exemplo n.º 10
0
def init_model(sample, model, sparm):
    """Initializes the learning model.
    
    Initialize the structure model model.  The model.size_psi must be set to
    the number of features.  The ancillary purpose is to add any
    information to model that is necessary from the user code
    perspective.  This function returns nothing."""

    # The weights are not simple the length of the data features: they
    # also include terms for the transition matrix
    gt_ftr = path.compute_path_features(sample[0][0].F, sample[0][1].pair)
    assert (np.ndim(gt_ftr) == 1)

    model.size_psi = len(gt_ftr)