def run_sims(maxscale=3):
    for scale in range(1,maxscale):
        synthetically_image_fitsfile(paths.simpath("simimage_scale{0}_gaussian.fits".format(scale)),
                                     base_name='casa_simimage_scale{0}_gaussian'.format(scale),
                                     cleanup=True)

        synthetically_image_fitsfile(paths.simpath("simimage_scale{0}_tophat.fits".format(scale)),
                                     base_name='casa_simimage_scale{0}_tophat'.format(scale),
                                     cleanup=True)
def run_sims(maxscale=3):
    for scale in range(1, maxscale):
        synthetically_image_fitsfile(
            paths.simpath("simimage_scale{0}_gaussian.fits".format(scale)),
            base_name='casa_simimage_scale{0}_gaussian'.format(scale),
            cleanup=True)

        synthetically_image_fitsfile(
            paths.simpath("simimage_scale{0}_tophat.fits".format(scale)),
            base_name='casa_simimage_scale{0}_tophat'.format(scale),
            cleanup=True)
def ridiculous_tests():
    for unit in ('Jy/beam', 'Jy/pixel', 'Jy', 'K'):
        fh = simulate_grid_for_fitsfile(paths.dpath("w51_te_continuum_best.fits"),
                                        separation=45*3, amplitude_range=[0.001,0.1],
                                        scale=3,
                                        random_offset=20)
        assert fh[0].data.max() > 0
        fh[0].header['BUNIT'] = unit
        fh.writeto(paths.simpath("stupidtest_{0}.fits".format(unit.replace("/","_"))),
                   clobber=True)
        synthetically_image_fitsfile(paths.simpath("stupidtest_{0}.fits".format(unit.replace("/","_"))),
                                     base_name="casa_stupidtest_{0}".format(unit.replace("/","_")),
                                     cleanup=True
                                    )
def setup_sims(maxscale=3):
    for scale in range(1,maxscale):
        fh = simulate_grid_for_fitsfile(paths.dpath("w51_te_continuum_best.fits"),
                                        separation=45*scale, amplitude_range=[0.001,0.1],
                                        scale=scale,
                                        random_offset=20)
        fh[0].header['BUNIT'] = 'Jy/beam'
        fh.writeto(paths.simpath("simimage_scale{0}_gaussian.fits".format(scale)),
                   clobber=True)

        fh = simulate_grid_for_fitsfile(paths.dpath("w51_te_continuum_best.fits"),
                                        separation=45*scale, amplitude_range=[0.001,0.1],
                                        kernel=Tophat2DKernel,
                                        scale=scale,
                                        random_offset=20)
        fh[0].header['BUNIT'] = 'Jy/beam'
        fh.writeto(paths.simpath("simimage_scale{0}_tophat.fits".format(scale)),
                   clobber=True)
def ridiculous_tests():
    for unit in ('Jy/beam', 'Jy/pixel', 'Jy', 'K'):
        fh = simulate_grid_for_fitsfile(
            paths.dpath("w51_te_continuum_best.fits"),
            separation=45 * 3,
            amplitude_range=[0.001, 0.1],
            scale=3,
            random_offset=20)
        assert fh[0].data.max() > 0
        fh[0].header['BUNIT'] = unit
        fh.writeto(paths.simpath("stupidtest_{0}.fits".format(
            unit.replace("/", "_"))),
                   clobber=True)
        synthetically_image_fitsfile(
            paths.simpath("stupidtest_{0}.fits".format(unit.replace("/",
                                                                    "_"))),
            base_name="casa_stupidtest_{0}".format(unit.replace("/", "_")),
            cleanup=True)
def setup_sims(maxscale=3):
    for scale in range(1, maxscale):
        fh = simulate_grid_for_fitsfile(
            paths.dpath("w51_te_continuum_best.fits"),
            separation=45 * scale,
            amplitude_range=[0.001, 0.1],
            scale=scale,
            random_offset=20)
        fh[0].header['BUNIT'] = 'Jy/beam'
        fh.writeto(paths.simpath(
            "simimage_scale{0}_gaussian.fits".format(scale)),
                   clobber=True)

        fh = simulate_grid_for_fitsfile(
            paths.dpath("w51_te_continuum_best.fits"),
            separation=45 * scale,
            amplitude_range=[0.001, 0.1],
            kernel=Tophat2DKernel,
            scale=scale,
            random_offset=20)
        fh[0].header['BUNIT'] = 'Jy/beam'
        fh.writeto(paths.simpath(
            "simimage_scale{0}_tophat.fits".format(scale)),
                   clobber=True)