(i, snrTrack[i]), xytext=(0, 13), va="center", ha="center", textcoords='offset points') plt.show() def main(pklFile): ''' ''' global snrTrack global trialN global wordsCorrect with open(pklFile, 'rb') as f: l = dill.load(f) snrTrack = l['snrTrack'] trialN = l['trialN'] wordsCorrect = l['wordsCorrect'] plotSNR() fitLogistic() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('pklFile', type=PathType(exists=True), help='') args = parser.parse_args() pklFile = args.pklFile main(pklFile)
# sumsqrd += np.sum(y_temp**2) # n += y_temp.size # rms = np.sqrt(sumsqrd/n) #np.save(os.path.join(rmsDir, 'overall_speech_rms.npy'), rms) return rms #sentenceFFT.append(np.abs(Zxx[:, ~np.any(sTemp, axis=0)])) if __name__ == "__main__": from pathtype import PathType # Create commandline interface parser = argparse.ArgumentParser(description='Generate stimulus for ' 'training TRF decoder by concatenating ' 'matrix test materials') parser.add_argument('--MatrixDir', type=PathType(exists=True, type='dir'), default='../speech_components', help='Matrix test speech data location') parser.add_argument('--OutDir', type=PathType(exists=None, type='dir'), default='./stimulus', help='Output directory') parser.add_argument('--CalcRMS', action='store_true') args = { k: v for k, v in vars(parser.parse_args()).items() if v is not None } rmsDir = os.path.join(args['OutDir'], "rms") if args['CalcRMS']: indexes = gen_indexes()
out = np.append(out, data[chunk['start']:chunk['stop']])#*rmsCorFactor) print(np.sqrt(np.mean((data[chunk['start']:chunk['stop']]*rmsCorFactor)**2))) sndio.write('./out.wav', out, rate=fs, format=fmtStr, enc=encStr) #silences['start'] = np.abs(zerox - silences['start'])).min() #for line in lines[1:]: if __name__ == "__main__": # Create commandline interface parser = argparse.ArgumentParser(description='Generate stimulus for ' 'training TRF decoder by concatenating ' 'matrix test materials') parser.add_argument('AudioFile', type=PathType(exists=True), default='./speech.wav', help='Speech wave file') parser.add_argument('AnnotationFile', type=PathType(exists=True), default='./speech.csv', help='Speech annotatin csv') args = {k:v for k,v in vars(parser.parse_args()).items() if v is not None} # Generate stimulus from arguments provided on command line flattenRMS(**args)
def main(args): file = args.data_file with open(file, 'rb') as pkl: a = dill.load(pkl) del a['participant'] np.save(os.path.basename(file) + '-new.npy', a) if __name__ == '__main__': #peak_pick_test() parser = argparse.ArgumentParser( description= 'Script for removing BPLabs sepcific objects from participant data') parser.add_argument(dest='data_file', type=PathType(), help='Configuration file for processing BDF', metavar='CONFIGFILE') parser.add_argument( '--verbose', '-v', action='count', help='Specifies level of verbosity in output. For example: \'-vvvvv\' ' 'will output all information. \'-v\' will output minimal information. ' ) args = parser.parse_args() # Set verbosity of logger output based on argument if not args.verbose: args.verbose = 10 else: