Exemplo n.º 1
0
                self.weights.append(randomInitialWeight())
                self.weightDeltas.append(0.0)

    # Output Format
    def __str__(self):
        out = "{" + str(round(self.input,2)) + "["
        if self.layer.layerType == NetLayerType.Output:
            for w in self.weights:
                out = out + str(round(w,2)) + ","
        elif self.layer.layerType == NetLayerType.Hidden:
            for c in self.center:
                out = out + str(round(c,2)) + ","
        out = out + "]" + str(round(self.output,2)) + "} "
        return out

#Main
if __name__=="__main__":
    trainPercentage = 0.8
    #p = PatternSet('data/optdigits/optdigits-orig.json', trainPercentage)   # 32x32
    #p = PatternSet('data/letter/letter-recognition.json', trainPercentage)  # 20000 @ 1x16 # Try 1 center per attribute, and allow outputs to combine them
    #p = PatternSet('data/pendigits/pendigits.json', trainPercentage)        # 10992 @ 1x16 # same as above
    #p = PatternSet('data/semeion/semeion.json', trainPercentage)            # 1593 @ 16x16 # Training set is very limited
    p = PatternSet('data/optdigits/optdigits.json', trainPercentage)        # 5620 @ 8x8
    
    n = Net(p)
    n.run(PatternType.Train, 0, int(p.count*trainPercentage))
    n.run(PatternType.Test, int(p.count*trainPercentage), p.count)

    p.printConfusionMatrix()
    print("Done")
Exemplo n.º 2
0
    # strategies = [TS.TrainingStrategyType.EvolutionStrategy, TS.TrainingStrategyType.GeneticAlgorithm]

    # Single:
    strategies = [TS.TrainingStrategyType.EvolutionStrategy]
    # strategies = [TS.TrainingStrategyType.GeneticAlgorithm]
    # strategies = [TS.TrainingStrategyType.DifferentialGA]

    trainPercentage = 0.8
    maxGenerations = 30
    populationSize = 20
    runsPerDataSet = 5  # 10

    # hiddenArchitecture = [14] # each hidden layer is a new index in this list, it's value = number of neurons in that layer
    for dataSet in allDataTypes:
        for strat in strategies:
            p = PatternSet(dataSet)  # this is here simply to init the confusion matrix
            for run in range(runsPerDataSet):
                p = PatternSet(dataSet)
                print(
                    "\nData Set: ("
                    + str(dataSet)
                    + ") Run: "
                    + str(run)
                    + " Strategy: "
                    + str(TS.TrainingStrategyType.desc(strat))
                )

                if run == 0:
                    p.initCombinedConfusionMatrix()
                hiddenArchitecture = [
                    2 * len(p.patterns[0]["p"])
Exemplo n.º 3
0
    #                 'data/zoo/zoo.json',
    #                 'data/iris/iris.json']

    # Single:
    # allDataTypes = ['data/ionosphere/ionosphere.json']
    # allDataTypes = ['data/block/pageblocks.json']
    # allDataTypes = ['data/heart/heart.json']
    # allDataTypes = ['data/glass/glass.json']
    # allDataTypes = ['data/car/car.json']
    # allDataTypes = ['data/seeds/seeds.json']
    allDataTypes = ['data/wine/wine.json']
    # allDataTypes = ['data/yeast/yeast.json']
    # allDataTypes = ['data/zoo/zoo.json']
    # allDataTypes = ['data/iris/iris.json']

    trainPercentage = 0.8
    runsPerDataSet = 10

    for dataset in allDataTypes:
        p = PatternSet(dataset)
        for run in range(runsPerDataSet):
            if run == 0:
                p.initCombinedConfusionMatrix()
            n = Network(p)
            n.run(PatternType.Train, 0, int(p.count*trainPercentage))
            saveWeights(n)
            n.run(PatternType.Test, int(p.count*trainPercentage), p.count)
            p.printStats()
        p.saveConfusionMatrix()
    print("Done")