Exemplo n.º 1
0
 def test_covariance_with_mask_independent_dim(self):
     x = rand(2, 3, 4, data_type=np.complex128)
     mask = np.random.uniform(0, 1, (
         2,
         4,
     ))
     psd = get_power_spectral_density_matrix(x, mask)
     tc.assert_equal(psd.shape, (2, 3, 3))
     assert_positive_semidefinite(psd)
Exemplo n.º 2
0
 def generate_and_verify_psd(self, x_shape, mask_shape, psd_shape=None):
     x, mask = self.generate_date(x_shape, mask_shape)
     if mask_shape is None:
         psd = get_power_spectral_density_matrix(x)
     else:
         psd = get_power_spectral_density_matrix(x, mask)
     if psd_shape is not None:
         tc.assert_equal(psd.shape, psd_shape)
     assert_hermitian(psd)
     assert_positive_semidefinite(psd)
Exemplo n.º 3
0
 def test_multiple_sources_for_source_separation(self):
     x = rand(2, 3, 4, data_type=np.complex128)
     mask = np.random.uniform(0, 1, (
         5,
         2,
         4,
     ))
     psd = get_power_spectral_density_matrix(x[np.newaxis, ...], mask)
     tc.assert_equal(psd.shape, (5, 2, 3, 3))
     assert_positive_semidefinite(psd)
Exemplo n.º 4
0
 def test_covariance_without_mask_independent_dim(self):
     x = rand(1, 2, 3, 4, data_type=np.complex128)
     psd = get_power_spectral_density_matrix(x)
     tc.assert_equal(psd.shape, (1, 2, 3, 3))
     assert_positive_semidefinite(psd)