Exemplo n.º 1
0
def summary_plot(out,ant_str='ant1-13',ptype='phase',pol='XX-YY'):
    ''' Makes a summary amplitude or phase plot for all baselines from ants in ant_str
        in out dictionary.
    '''
    import matplotlib.pyplot as plt
    
    ant_list = p.ant_str2list(ant_str)
    nant = len(ant_list)
    if ptype != 'amp' and ptype != 'phase':
        print "Invalid plot type.  Must be 'amp' or 'phase'."
        return
    poloff = 0
    if pol != 'XX-YY':
        poloff = 2
    f, ax = plt.subplots(nant,nant)
    f.subplots_adjust(hspace=0,wspace=0)
    bl2ord = p.bl_list()
    for axrow in ax:
        for a in axrow:
            a.xaxis.set_visible(False)
            a.yaxis.set_visible(False)
    for i in range(nant-1):
        ai = ant_list[i]
        for j in range(i+1,nant):
            aj = ant_list[j]
            if ptype == 'phase':
                ax[i,j].imshow(np.angle(out['x'][bl2ord[ai,aj],0+poloff]))
                ax[j,i].imshow(np.angle(out['x'][bl2ord[ai,aj],1+poloff]))
            elif ptype == 'amp':
                ax[i,j].imshow(np.abs(out['x'][bl2ord[ai,aj],0+poloff]))
                ax[j,i].imshow(np.abs(out['x'][bl2ord[ai,aj],1+poloff]))
    for i in range(nant):
        ai = ant_list[i]
        ax[i,i].text(0.5,0.5,str(ai+1),ha='center',va='center',transform=ax[i,i].transAxes,fontsize=14)
Exemplo n.º 2
0
def DCM_cal(filename=None,fseqfile='gainseq.fsq',dcmattn=None,missing='ant15',update=False):

    if filename is None:
        return 'Must specify ADC packet capture filename, e.g. "/dppdata1/PRT/PRT<yyyymmddhhmmss>adc.dat"'

    userpass = '******'
    fseq_handle = urllib2.urlopen('ftp://'+userpass+'acc.solar.pvt/parm/'+fseqfile,timeout=0.5)
    lines = fseq_handle.readlines()
    fseq_handle.close()
    for line in lines:
        if line.find('LIST:SEQUENCE') != -1:
            line = line[14:]
            bandlist = np.array(map(int,line.split(',')))
    if len(np.unique(bandlist)) != 34:
        print 'Frequency sequence must contain all bands [1-34]'
        return None
    # Read packet capture file
    adc = p.rd_jspec(filename)
    pwr = np.rollaxis(adc['phdr'],2)[:,:,:2]
    # Put measured power into uniform array arranged by band
    new_pwr = np.zeros((34,16,2))
    for i in range(34):
        idx, = np.where(bandlist-1 == i)
        if len(idx) > 0:
            new_pwr[i] = np.median(pwr[idx],0)
    new_pwr.shape = (34,32)
    # Read table from the database.
    import cal_header
    import stateframe
    xml, buf = cal_header.read_cal(2)
    cur_table = stateframe.extract(buf,xml['Attenuation'])
    
    if dcmattn:
        # A DCM attenuation value was given, which presumes a constant value
        # so use it as the "original table."
        orig_table = np.zeros((34,30)) + dcmattn
        # orig_table[:,26:28] = 24
        orig_table[:,28:] = 0
    else:
        # No DCM attenuation value was given, so use current DCM master
        # table from the database.
        orig_table = cur_table
        
    attn = np.log10(new_pwr[:,:-2]/1600.)*10.
    # Zero any changes for missing antennas, and override orig_table with cur_table for those antennas
    if missing:
        idx = p.ant_str2list(missing)
        bad = np.sort(np.concatenate((idx*2,idx*2+1)))
        attn[:,bad] = 0
        orig_table[:,bad] = cur_table[:,bad]
    new_table = (np.clip(orig_table + attn,0,30)/2).astype(int)*2
    DCMlines = []
    DCMlines.append('#      Ant1  Ant2  Ant3  Ant4  Ant5  Ant6  Ant7  Ant8  Ant9 Ant10 Ant11 Ant12 Ant13 Ant14 Ant15')
    DCMlines.append('#      X  Y  X  Y  X  Y  X  Y  X  Y  X  Y  X  Y  X  Y  X  Y  X  Y  X  Y  X  Y  X  Y  X  Y  X  Y')
    DCMlines.append('#     ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----')
    for band in range(1,35):
        DCMlines.append('{:2} :  {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2} {:2}'.format(band,*new_table[band-1]))
    return DCMlines
Exemplo n.º 3
0
def xydla(filename, ant_str='ant1-14', apply=False):
    ''' Determine X vs. Y delay based on packet capture with Noise Diode on
    
        filename    Name and path of a PRT (packet capture) file taken with ND-ON,
                      using a fixed band, e.g. band15.fsq.
                      
        Returns xy  14-element list of delays to apply, for use in second argument
                      of cal_header.dla_update2sql()
                      
        Optional argument:
        ant_str     If supplied, is the standard specification of antennas to include.
                       Antennas not included are updated with 0 (i.e. no change)
        apply       If True, calls cal_header.dla_update2sql() and 
                                   cal_header.dla_censql2table()
                      to update X vs. Y delays
    '''
    import matplotlib.pylab as plt
    from util import lobe
    f, ax = plt.subplots(4, 4)
    ants = p.ant_str2list(ant_str)
    ax.shape = (16)
    if type(filename) is dict:
        # Interpret input as an already read dictionary, rather than a filename, and skip
        # the slow process of reading it again.
        out = filename
    else:
        out = p.rd_jspec(filename)
    xy = []
    chrange = np.arange(
        2100, 3900)  # Portion of 4096 sub-channel range to use for the fit
    npts = len(chrange)
    x = np.linspace(
        0, np.pi * npts / 4096.,
        1800)  # This makes phase slope come out in units of delay steps
    for i in range(14):
        if i in ants:
            ax[i].plot(np.angle(out['a'][i, 2, :, 30]),
                       'y.',
                       label='Ant ' + str(i + 1))
            res = np.polyfit(x, np.unwrap(np.angle(out['a'][i, 2, chrange,
                                                            30])), 1)
            ax[i].plot(chrange, lobe(np.polyval(res, x)), 'r.')
            ax[i].set_ylim(-4, 4)
            ax[i].legend(fontsize=9, loc='best', fancybox=True, framealpha=0.5)
        else:
            res = [0., 0.]
        xy.append(res[0])
    if apply:
        import cal_header as ch
        ch.dla_update2sql(np.zeros(14, np.float), np.array(xy))
        ch.dla_censql2table()
    return np.array(xy)
Exemplo n.º 4
0
def summary_plot(out, ant_str='ant1-13', ptype='phase', pol='XX-YY'):
    ''' Makes a summary amplitude or phase plot for all baselines from ants in ant_str
        in out dictionary.
    '''
    import matplotlib.pyplot as plt

    ant_list = p.ant_str2list(ant_str)
    nant = len(ant_list)
    if ptype != 'amp' and ptype != 'phase':
        print "Invalid plot type.  Must be 'amp' or 'phase'."
        return
    poloff = 0
    if pol != 'XX-YY':
        poloff = 2
    f, ax = plt.subplots(nant, nant)
    f.subplots_adjust(hspace=0, wspace=0)
    bl2ord = p.bl_list()
    for axrow in ax:
        for a in axrow:
            a.xaxis.set_visible(False)
            a.yaxis.set_visible(False)
    for i in range(nant - 1):
        ai = ant_list[i]
        for j in range(i + 1, nant):
            aj = ant_list[j]
            if ptype == 'phase':
                ax[i, j].imshow(np.angle(out['x'][bl2ord[ai, aj], 0 + poloff]))
                ax[j, i].imshow(np.angle(out['x'][bl2ord[ai, aj], 1 + poloff]))
            elif ptype == 'amp':
                ax[i, j].imshow(np.abs(out['x'][bl2ord[ai, aj], 0 + poloff]))
                ax[j, i].imshow(np.abs(out['x'][bl2ord[ai, aj], 1 + poloff]))
    for i in range(nant):
        ai = ant_list[i]
        ax[i, i].text(0.5,
                      0.5,
                      str(ai + 1),
                      ha='center',
                      va='center',
                      transform=ax[i, i].transAxes,
                      fontsize=14)
Exemplo n.º 5
0
def getphasecor(data,
                ant_str='ant1-14',
                polist=[0, 1],
                crange=[0, 4095],
                pplot=False):
    ''' Routine adapted from Maria Loukitcheva's code, to find phase slopes in
        correlated data on a geosynchronous satellite.
    '''
    def movingaverage(interval, window_size):
        # Range of ones, scaled for unit area
        window = np.ones(int(window_size)) / np.float(window_size)
        return np.convolve(interval, window, 'same')

    antlist = p.ant_str2list(ant_str)
    print antlist + 1
    ndon = False
    if len(data[:, 0, 0, 0]) == 16:
        ndon = True
    if ndon:
        chlist = antlist
    else:
        chlist = antlist[1:] - 1
    bl2ord = p.bl_list()
    if not ndon:
        data = data[bl2ord[0, 1:]]  # Consider only baselines with antenna 1
    print data.shape
    pcor = np.linspace(0, np.pi, 4096)
    istep = np.arange(-50, 50)  # Range of steps to search
    chan = np.arange(4096)
    phasecor = np.zeros((14, len(polist)))

    start = crange[0]
    end = crange[1]
    #antennalist=[2]

    if pplot:
        import matplotlib.pylab as plt
        f, ax = plt.subplots(len(antlist), len(polist))

    for i, iant in enumerate(chlist):
        for j, jpol in enumerate(polist):
            phaseall = np.zeros(len(istep))
            for k in range(len(istep)):
                #if movaver:
                #    aver = movingaverage(data[bl2ord[0, antennalist[i]], j, :, 0],201)
                #    aver = cos(angle(aver) + istep[k] * pcor)
                #else:
                aver = np.cos(
                    2 * (np.angle(data[iant, jpol, :, 0]) + istep[k] * pcor))
                phaseall[k] = np.polyfit(chan[start:end],
                                         aver[start:end],
                                         0,
                                         full=True)[1]
            #print phaseall
            #print argmin(drange)
            #print corind[argmin(drange)]
            ioff = iant + 1
            if ndon: ioff = iant
            phasecor[ioff, j] = -istep[np.argmin(
                phaseall)]  # Correct delay is negative of the phase correction
            phas0 = np.angle(data[iant, jpol, :, 0])
            phas = phas0 + istep[np.argmin(phaseall)] * pcor
            if pplot:
                if ndon:
                    iax = i
                else:
                    iax = i + 1
                if len(polist) > 1:
                    ax[iax, j].plot(phas0 % (2 * np.pi), '.')
                    ax[iax, j].plot(phas % (2 * np.pi), '.')
                    ax[iax, j].plot(chan[start:end],
                                    phas[start:end] % (2 * np.pi),
                                    color='white')
                    ax[iax, j].set_ylim(-1, 7)
                else:
                    ax[iax].plot(phas0 % (2 * np.pi), '.')
                    ax[iax].plot(phas % (2 * np.pi), '.')
                    ax[iax].plot(chan[start:end],
                                 phas[start:end] % (2 * np.pi),
                                 color='white')
                    ax[iax].set_ylim(-1, 7)
    if len(polist) == 1:
        # Reduce two-dimensional array with second dimension = 1 to a single dimension
        return phasecor[:, 0]
    return phasecor