Exemplo n.º 1
0
def test_radius_outlier_removal_alias():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZ")
    output1 = pclpy.radius_outlier_removal(pc,
                                           search_radius=0.5,
                                           min_neighbors=10)
    output2 = pclpy.ror(pc, search_radius=0.5, min_neighbors=10)
    assert np.allclose(output1.xyz, output2.xyz)
Exemplo n.º 2
0
def test_greedy_projection_triangulation_simple():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZRGBA")

    cloud_with_normals = pcl.PointCloud.PointNormal()
    pc.compute_normals(radius=0.15,
                       output_cloud=cloud_with_normals,
                       num_threads=8)

    ms = pcl.surface.GreedyProjectionTriangulation.PointNormal()

    pi = 3.141592

    triangles = pcl.PolygonMesh()
    ms.setSearchRadius(0.2)
    ms.setMu(2.5)
    ms.setMaximumNearestNeighbors(100)
    ms.setMaximumSurfaceAngle(pi / 4)
    ms.setMinimumAngle(pi / 18)
    ms.setMaximumAngle(2 * pi / 3)
    ms.setNormalConsistency(True)
    ms.setInputCloud(cloud_with_normals)
    tree2 = pcl.search.KdTree.PointNormal()
    ms.setSearchMethod(tree2)
    ms.reconstruct(triangles)

    assert 125 < len(triangles.polygons
                     ) < 250  # depending on the build, this number can vary...
Exemplo n.º 3
0
def test_moving_least_squares_alias():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZ")
    output1 = pclpy.moving_least_squares(pc,
                                         search_radius=0.5,
                                         compute_normals=False)
    output2 = pclpy.mls(pc, search_radius=0.5, compute_normals=False)
    assert np.allclose(output1.xyz, output2.xyz)
Exemplo n.º 4
0
def test_moving_least_squares_no_normals():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZ")
    output = pclpy.moving_least_squares(pc,
                                        search_radius=0.5,
                                        compute_normals=False)
    assert output.size() == 4942
    assert not hasattr(output, "normals")
Exemplo n.º 5
0
def test_radius_outlier_removal_negative():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZ")
    output = pclpy.radius_outlier_removal(pc,
                                          search_radius=0.5,
                                          min_neighbors=10,
                                          negative=True)
    assert output.size() == 721
Exemplo n.º 6
0
def test_difference_of_normals_estimation_simple():
    pc = pclpy.read(test_data("street.las"), "PointXYZRGBA")

    pc_subsampled = pclpy.octree_voxel_downsample(pc, 0.05)
    subsampled = pclpy.octree_voxel_downsample(pc_subsampled, 0.4)

    normals_large = pcl.PointCloud.PointNormal()
    pc_subsampled.compute_normals(radius=4,
                                  output_cloud=normals_large,
                                  num_threads=8,
                                  search_surface=subsampled)
    normals_small = pcl.PointCloud.PointNormal()
    pc_subsampled.compute_normals(radius=0.10,
                                  output_cloud=normals_small,
                                  num_threads=8)

    don = pcl.features.DifferenceOfNormalsEstimation.PointXYZRGBA_PointNormal_PointNormal(
    )
    don.setInputCloud(pc_subsampled)
    don.setNormalScaleLarge(normals_large)
    don.setNormalScaleSmall(normals_small)
    output = pcl.PointCloud.PointNormal(pc_subsampled.xyz)
    don.computeFeature(output)
    indices = np.argwhere(output.curvature > 0.4)
    output2 = pcl.PointCloud.PointNormal(output, pcl.vectors.Int(indices))

    clusters = pclpy.extract_clusters(pcl.PointCloud.PointXYZ(output2.xyz),
                                      0.1, 50, 100000)
    assert len(clusters) == 32
Exemplo n.º 7
0
def test_las_read_normals():
    pc = pclpy.read(test_data("street_thinned_with_normals.las"),
                    "PointNormal")
    assert hasattr(pc, "normal_x")
    assert hasattr(pc, "normal_y")
    assert hasattr(pc, "normal_z")
    assert hasattr(pc, "curvature")
Exemplo n.º 8
0
def test_radius_outlier_removal_indices():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZ")
    indices = pcl.vectors.Int(np.arange(10, 1000, dtype="i"))
    output = pclpy.radius_outlier_removal(pc,
                                          search_radius=0.5,
                                          min_neighbors=10,
                                          indices=indices)
    assert output.size() == 889
Exemplo n.º 9
0
def test_las_to_pcd(temp_file):
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZ")
    writer = pcl.io.PCDWriter()
    writer.writeBinary(temp_file, pc)
    reader = pcl.io.PCDReader()
    pcd = pcl.PointCloud.PointXYZ()
    reader.read(temp_file, pcd)
    assert pcd.size() == 5025
Exemplo n.º 10
0
def test_voxel_centroid_simple():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZ")
    vox = pcl.octree.OctreePointCloudVoxelCentroid.PointXYZ(0.3)
    vox.setInputCloud(pc)
    vox.addPointsFromInputCloud()
    centroids = pcl.PointCloud.PointXYZ()
    vox.getVoxelCentroids(centroids.points)
    assert centroids.size() == 3148
Exemplo n.º 11
0
def test_extract_indices_simple():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZ")
    extract = pcl.filters.ExtractIndices.PointXYZ()
    extract.setInputCloud(pc)
    pi = pcl.PointIndices()
    pi.indices.append(3)
    extract.setIndices(pi)
    out = pcl.PointCloud.PointXYZ()
    extract.filter(out)
    assert np.allclose(out.xyz, np.array([[12.259, -0.124, 21.9086]], "f"))
Exemplo n.º 12
0
def test_las_write_with_offset(temp_las_path):
    a = np.random.ranf(3).reshape(-1, 3)
    pc = pcl.PointCloud.PointXYZ.from_array(a)
    pclpy.write_las(pc, temp_las_path, xyz_offset=[10, 10, 10])
    pc = pclpy.read(temp_las_path, "PointXYZ")
    assert np.all(pc.x >= 10)
    assert np.all(pc.x <= 11)
    assert np.all(pc.y >= 10)
    assert np.all(pc.y <= 11)
    assert np.all(pc.z >= 10)
    assert np.all(pc.z <= 11)
Exemplo n.º 13
0
def test_compute_normals_simple_given_output():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZ")
    pc.compute_normals(radius=1)
    pc2 = pcl.PointCloud.PointNormal(pc.xyz)
    assert np.allclose(pc.xyz, pc2.xyz)
    output = pclpy.compute_normals(pc2, radius=1, output_cloud=pc2)
    normals = output.normals
    nan = np.sum(np.isnan(normals), axis=1)
    assert np.sum(nan) != normals.shape[0]
    assert np.sum(nan) == 6
    norm = np.linalg.norm(normals[~nan], axis=1)
    assert np.allclose(norm, 1., atol=0.001)
Exemplo n.º 14
0
def test_supervoxel_clustering():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZRGBA")
    normals = pc.compute_normals(radius=0.3)
    vox = pcl.segmentation.SupervoxelClustering.PointXYZRGBA(voxel_resolution=1,
                                                             seed_resolution=2)
    vox.setInputCloud(pc)
    vox.setNormalCloud(normals)
    # vox.setSpatialImportance(2)
    # vox.setNormalImportance(2)
    # vox.setColorImportance(2)
    output = pcl.vectors.map_uint32t_PointXYZRGBA()
    vox.extract(output)
    assert len(list(output.items())) == 91
Exemplo n.º 15
0
def test_las_read_with_offset(temp_las_path):
    a = np.random.ranf(3).reshape(-1, 3)
    pc = pcl.PointCloud.PointXYZ.from_array(a)
    offset = [10, 10, 10]
    pclpy.write_las(pc, temp_las_path, xyz_offset=offset)
    file_offset = pclpy.io.las.get_offset(temp_las_path)
    assert np.allclose(offset, file_offset)
    pc = pclpy.read(temp_las_path, "PointXYZ", xyz_offset=offset)
    assert np.all(pc.x >= 0)
    assert np.all(pc.x <= 1)
    assert np.all(pc.y >= 0)
    assert np.all(pc.y <= 1)
    assert np.all(pc.z >= 0)
    assert np.all(pc.z <= 1)
Exemplo n.º 16
0
def test_region_growing_simple():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZRGBA")
    normals = pc.compute_normals(radius=0.35)

    clusters = pclpy.region_growing(pc,
                                    normals=normals,
                                    min_size=10,
                                    max_size=1000000,
                                    n_neighbours=15,
                                    smooth_threshold=5,
                                    curvature_threshold=5,
                                    residual_threshold=1,
                                    )
    assert max([len(c.indices) for c in clusters]) == 2449  # ground
Exemplo n.º 17
0
def test_region_growing():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZRGBA")
    rg = pcl.segmentation.RegionGrowing.PointXYZRGBA_Normal()
    rg.setInputCloud(pc)
    normals_estimation = pcl.features.NormalEstimationOMP.PointXYZRGBA_Normal()
    normals_estimation.setInputCloud(pc)
    normals = pcl.PointCloud.Normal()
    normals_estimation.setRadiusSearch(0.35)
    normals_estimation.compute(normals)
    rg.setInputNormals(normals)

    rg.setMaxClusterSize(1000000)
    rg.setMinClusterSize(10)
    rg.setNumberOfNeighbours(15)
    rg.setSmoothnessThreshold(5 / 180 * math.pi)
    rg.setCurvatureThreshold(5)
    rg.setResidualThreshold(1)
    clusters = pcl.vectors.PointIndices()
    rg.extract(clusters)
    assert max([len(c.indices) for c in clusters]) == 2449  # ground
Exemplo n.º 18
0
def test_fpfh_simple():
    pc = pclpy.read(test_data("street.las"), "PointXYZ")

    pc = pclpy.octree_voxel_downsample(pc, 0.25)
    normals = pc.compute_normals(radius=0.5, num_threads=8)

    fpfh = pcl.features.FPFHEstimation.PointXYZ_Normal_FPFHSignature33()
    fpfh.setInputCloud(pc)
    fpfh.setInputNormals(normals)
    fpfh.setRadiusSearch(0.5)

    fpfhs = pcl.PointCloud.FPFHSignature33()
    fpfh.compute(fpfhs)

    expected_bottom_right = np.array([
        [6.2739134, 2.528063, 2.078603],
        [1.3269598, 1.0290794, 0.27428713],
        [0., 0., 0.],
    ])

    assert np.allclose(fpfhs.histogram[-3:, -3:], expected_bottom_right)
Exemplo n.º 19
0
def test_euclidean_cluster():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZRGBA")  # type: pcl.PointCloud.PointXYZRGBA
    indices = pc.extract_clusters(tolerance=0.5, min_size=10, max_size=100000)
    assert len(indices[0].indices) == 4799
Exemplo n.º 20
0
def test_voxel_centroid_api():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZ")
    output = pclpy.octree_voxel_centroid(pc, resolution=0.3)
    assert output.size() == 3148
Exemplo n.º 21
0
def test_las_intensity():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZI")
    assert pc.size() == 5025
    assert np.any(pc.intensity)
Exemplo n.º 22
0
def test_las_rgb():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZRGBA")
    assert pc.size() == 5025
    assert np.any(pc.r)
Exemplo n.º 23
0
def test_las_xyz():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZ")
    assert pc.size() == 5025
Exemplo n.º 24
0
#%%

import pclpy
from pclpy import pcl

#%%

point_cloud = pclpy.read(
    r"C:\Users\laptop\Google Drive\Google Drive\Shared folder Tasos-VanBoven\Sample_data\Broccoli\35m\Rijweg_stalling1-8-5.las",
    "PointXYZRGBA")
mls = pcl.surface.MovingLeastSquaresOMP.PointXYZRGBA_PointNormal()
tree = pcl.search.KdTree.PointXYZRGBA()
mls.setSearchRadius(0.05)
mls.setPolynomialFit(False)
mls.setNumberOfThreads(12)
mls.setInputCloud(point_cloud)
mls.setSearchMethod(tree)
mls.setComputeNormals(True)
output = pcl.PointCloud.PointNormal()
mls.process(output)

# =============================================================================
# visual = pclpy.show(tree)
# visual.ShowColorACloud(cloud, b'cloud')
#  =============================================================================
Exemplo n.º 25
0
def test_viewer_intensity():
    pc = pclpy.read(test_data("street.las"), "PointXYZI")
    viewer = pclpy.Viewer(pc)
Exemplo n.º 26
0
def test_moving_least_squares_with_output():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZ")
    output = pcl.PointCloud.PointNormal()
    pclpy.moving_least_squares(pc, search_radius=0.5, output_cloud=output)
    assert output.size() == 4942
Exemplo n.º 27
0
def test_compute_normals_simple():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZ")
    output = pclpy.compute_normals(pc, radius=1)
    assert np.any(output.normals)
Exemplo n.º 28
0
    def pre_process_pc(self):
        if os.path.exists(
                unlabelled_configure.get("Constants", "pkl_file_path")):
            return
        # read a las file
        point_cloud = pclpy.read(
            unlabelled_configure.get("Test", "las_file_path"), "PointXYZ")
        output = unlabelled_configure.get("Test", "pcd_output_path")
        writer = pcl.io.PCDWriter()
        writer.writeBinary(output, point_cloud)
        # pcd = o3d.io.read_point_cloud("../lidar/data/4810E_54560N.pcd")
        pcd = o3d.io.read_point_cloud(output)
        input_data = np.asarray(pcd.points)
        input_data[:, 0] = input_data[:, 0] - 481000
        input_data[:, 1] = input_data[:, 1] - 5456000
        pcd.points = o3d.utility.Vector3dVector(input_data)

        UTM_10_PROJ = Proj(
            "+proj=utm +zone=10N, +north +ellps=WGS84 +datum=WGS84 +units=m +no_defs"
        )
        filename = unlabelled_configure.get("Test", "dem_path")
        xyz = open(filename, "r")
        count = 0
        for line in xyz:
            count += 1
        xyz.close()
        xyz = open(filename, "r")
        dem_points = np.ndarray((count, 3))
        count = 0
        for line in xyz:
            x, y, z = line.split()
            #     lat, lon = UTM_10_PROJ(x, y, inverse=True)
            dem_points[count, :] = np.array([x, y, z])
            count += 1
        xyz.close()
        dem_points[:, 0] = dem_points[:, 0] - 481000
        dem_points[:, 1] = dem_points[:, 1] - 5456000
        dem_pcd = o3d.geometry.PointCloud()
        dem_pcd.points = o3d.utility.Vector3dVector(dem_points)

        downpcd = pcd.uniform_down_sample(
            every_k_points=self.uniform_down_k_point)

        dists = downpcd.compute_point_cloud_distance(dem_pcd)
        dists = np.asarray(dists)
        downpcd_points = np.asarray(downpcd.points)
        downpcd_points[:, 2] = dists
        downpcd.points = o3d.utility.Vector3dVector(downpcd_points)

        plane_model, inliers = downpcd.segment_plane(
            distance_threshold=self.distance_threshold,
            ransac_n=self.ransac_n,
            num_iterations=self.num_iterations)
        inlier_cloud = downpcd.select_by_index(inliers)
        ground_diff = downpcd.compute_point_cloud_distance(inlier_cloud)
        ground_diff = np.asarray(ground_diff)
        ind = np.where(ground_diff > self.ground_threshold)[0]
        pcd_without_ground = downpcd.select_by_index(ind)

        with open(unlabelled_configure.get("Constants", "pkl_file_path"),
                  "wb") as f:
            pickle.dump(np.asarray(pcd_without_ground.points), f)
        print(np.asarray(pcd_without_ground.points).shape)
Exemplo n.º 29
0
def test_voxel_centroid_api_rgba():
    pc = pclpy.read(test_data("street_thinned.las"), "PointXYZRGBA")
    output = pclpy.octree_voxel_downsample(pc, resolution=0.3, centroids=False)
    assert output.size() == 3148