def _model_init(): p_model = pcn.Pnet() #p_model.apply(weight_init) p_model.cuda(DEVICE_IDS[0]) p_model.train() return p_model
import tools_matrix_cpu as tools threshold = [0.6, 0.6, 0.7] EPS = 0.001 if __name__ == "__main__": #image_name = "images/25.jpg" #image_name = "images/yueyu.jpg" image_name = "images/qingxie.jpg" #image_name = "images/9.jpg" #image_name = "images/17.jpg" #image_name = "images/24.jpg" #image_name = "images/5.jpg" #image_name = "images/7.jpg" #image_name = "images/daozhi.jpg" pnet = pcn.Pnet() pnet.load_state_dict( torch.load("pnet/pnet_190310_iter_1238000_.pth", map_location=lambda storage, loc: storage)) pnet.eval() rnet = pcn.Rnet() rnet.load_state_dict( torch.load("rnet/pnet_190312_iter_979000_.pth", map_location=lambda storage, loc: storage)) rnet.eval() onet = pcn.Onet() onet.load_state_dict( torch.load("onet/onet_190227_iter_1499000_.pth", map_location=lambda storage, loc: storage))