Exemplo n.º 1
0
    def dynamic(self):

        logger.info("Step 4: Monte Carlo simulation")

        # draw a random value (uniform for the entire map)
        z = pcr.mapnormal()
        #~ self.report(z,"z")

        # constraints, in order to make sure that random values are in the table of "lookup_table_average_thickness"
        z = pcr.max(-5.0, z)
        z = pcr.min(5.0, z)

        # assign average thickness (also uniform for the entire map) based on z
        self.Davg = pcr.lookupscalar(self.lookup_table_average_thickness, z)
        #
        self.report(self.Davg, "davg")
        self.lnDavg = pcr.ln(self.Davg)

        # sedimentary basin thickness (varying over cells and samples)
        lnD = self.F * (self.lnCV * self.lnDavg) + self.lnDavg

        # set the minimum depth (must be bigger than zero)
        minimum_depth = 0.005
        lnD = pcr.max(pcr.ln(minimum_depth), lnD)

        # extrapolation
        lnD = pcr.cover(lnD, \
              pcr.windowaverage(lnD, 1.50*vos.getMapAttributes(self.clone_map_file,"cellsize")))
        lnD = pcr.cover(lnD, \
              pcr.windowaverage(pcr.cover(lnD, pcr.ln(minimum_depth)), 3.00*vos.getMapAttributes(self.clone_map_file,"cellsize")))
        lnD = pcr.cover(lnD, \
              pcr.windowaverage(pcr.cover(lnD, pcr.ln(minimum_depth)), 0.50))

        # smoothing per quarter arc degree
        lnD = pcr.windowaverage(lnD, 0.25)

        # thickness in meter
        self.D = pcr.exp(lnD)

        #~ # smoothing  bottom elevation
        #~ dem_bottom = pcr.windowaverage(self.dem_average - self.D, 0.50)
        #~ # thickness in meter
        #~ self.D = pcr.max(0.0, self.dem_average - dem_bottom)

        #~ # smoothing
        #~ self.D = pcr.windowaverage(self.D, 1.50*vos.getMapAttributes(self.clone_map_file,"cellsize"))

        # accuracy until cm only
        self.D = pcr.rounddown(self.D * 100.) / 100.

        self.report(self.D, "damc")
Exemplo n.º 2
0
def rainfall_interception_gash(Cmax,
                               EoverR,
                               CanopyGapFraction,
                               Precipitation,
                               CanopyStorage,
                               maxevap=9999):
    """
    Interception according to the Gash model (For daily timesteps). 
    """
    # TODO:  add other rainfall interception method (lui)
    # TODO: Include subdaily Gash model
    # TODO: add LAI variation in year
    # Hack for stemflow

    pt = 0.1 * CanopyGapFraction

    P_sat = pcr.max(
        pcr.scalar(0.0),
        pcr.cover(
            (-Cmax / EoverR) * pcr.ln(1.0 - (EoverR /
                                             (1.0 - CanopyGapFraction - pt))),
            pcr.scalar(0.0),
        ),
    )

    # large storms P > P_sat
    largestorms = Precipitation > P_sat

    Iwet = pcr.ifthenelse(
        largestorms,
        ((1 - CanopyGapFraction - pt) * P_sat) - Cmax,
        Precipitation * (1 - CanopyGapFraction - pt),
    )
    Isat = pcr.ifthenelse(largestorms, (EoverR) * (Precipitation - P_sat), 0.0)
    Idry = pcr.ifthenelse(largestorms, Cmax, 0.0)
    Itrunc = 0

    StemFlow = pt * Precipitation

    ThroughFall = Precipitation - Iwet - Idry - Isat - Itrunc - StemFlow
    Interception = Iwet + Idry + Isat + Itrunc

    # Non corect for area without any Interception (say open water Cmax -- zero)
    CmaxZero = Cmax <= 0.0
    ThroughFall = pcr.ifthenelse(CmaxZero, Precipitation, ThroughFall)
    Interception = pcr.ifthenelse(CmaxZero, pcr.scalar(0.0), Interception)
    StemFlow = pcr.ifthenelse(CmaxZero, pcr.scalar(0.0), StemFlow)

    # Now corect for maximum potential evap
    OverEstimate = pcr.ifthenelse(Interception > maxevap,
                                  Interception - maxevap, pcr.scalar(0.0))
    Interception = pcr.min(Interception, maxevap)
    # Add surpluss to the thoughdfall
    ThroughFall = ThroughFall + OverEstimate

    return ThroughFall, Interception, StemFlow, CanopyStorage
Exemplo n.º 3
0
def rainfall_interception_gash(
    Cmax, EoverR, CanopyGapFraction, Precipitation, CanopyStorage, maxevap=9999
):
    """
    Interception according to the Gash model (For daily timesteps). 
    """
    # TODO:  add other rainfall interception method (lui)
    # TODO: Include subdaily Gash model
    # TODO: add LAI variation in year
    # Hack for stemflow

    pt = 0.1 * CanopyGapFraction

    P_sat = pcr.max(
        pcr.scalar(0.0),
        pcr.cover(
            (-Cmax / EoverR) * pcr.ln(1.0 - (EoverR / (1.0 - CanopyGapFraction - pt))),
            pcr.scalar(0.0),
        ),
    )

    # large storms P > P_sat
    largestorms = Precipitation > P_sat

    Iwet = pcr.ifthenelse(
        largestorms,
        ((1 - CanopyGapFraction - pt) * P_sat) - Cmax,
        Precipitation * (1 - CanopyGapFraction - pt),
    )
    Isat = pcr.ifthenelse(largestorms, (EoverR) * (Precipitation - P_sat), 0.0)
    Idry = pcr.ifthenelse(largestorms, Cmax, 0.0)
    Itrunc = 0

    StemFlow = pt * Precipitation

    ThroughFall = Precipitation - Iwet - Idry - Isat - Itrunc - StemFlow
    Interception = Iwet + Idry + Isat + Itrunc

    # Non corect for area without any Interception (say open water Cmax -- zero)
    CmaxZero = Cmax <= 0.0
    ThroughFall = pcr.ifthenelse(CmaxZero, Precipitation, ThroughFall)
    Interception = pcr.ifthenelse(CmaxZero, pcr.scalar(0.0), Interception)
    StemFlow = pcr.ifthenelse(CmaxZero, pcr.scalar(0.0), StemFlow)

    # Now corect for maximum potential evap
    OverEstimate = pcr.ifthenelse(
        Interception > maxevap, Interception - maxevap, pcr.scalar(0.0)
    )
    Interception = pcr.min(Interception, maxevap)
    # Add surpluss to the thoughdfall
    ThroughFall = ThroughFall + OverEstimate

    return ThroughFall, Interception, StemFlow, CanopyStorage
    def correction_per_aquifer(self, id):
        
        id = float(id); print id
        
        # identify aquifer mask  
        aquifer_landmask = pcr.ifthen(self.margat_aquifer_map == pcr.nominal(id), pcr.boolean(1))
        
        # obtain the logarithmic value of Margat value
        exp_margat_thick = pcr.cellvalue(\
                           pcr.mapmaximum(\
                           pcr.ifthen(aquifer_landmask, pcr.ln(self.margat_aquifer_thickness))), 1)[0]

        # obtain the logarithmic values of 'estimated thickness'
        exp_approx_thick = pcr.ifthen(aquifer_landmask, pcr.ln(self.approx_thick)) 
                       
        exp_approx_thick_array = pcr.pcr2numpy(exp_approx_thick, vos.MV)
        exp_approx_thick_array = exp_approx_thick_array[exp_approx_thick_array <> vos.MV]
        exp_approx_thick_array = exp_approx_thick_array[exp_approx_thick_array < 1000000.]
        
        # identify percentile
        exp_approx_minim = np.percentile(exp_approx_thick_array,  2.5);
        exp_approx_maxim = np.percentile(exp_approx_thick_array, 97.5); 

        # correcting
        exp_approx_thick_correct  = ( exp_approx_thick - exp_approx_minim ) / \
                                    ( exp_approx_maxim - exp_approx_minim )   
        exp_approx_thick_correct  = pcr.max(0.0, exp_approx_thick_correct )
        exp_approx_thick_correct *= pcr.max(0.0,\
                                    ( exp_margat_thick - exp_approx_minim ) )
        exp_approx_thick_correct += pcr.min(exp_approx_minim, exp_approx_thick)

        # maximum thickness
        exp_approx_thick_correct  = pcr.min(exp_margat_thick, exp_approx_thick_correct)

        # corrected thickness
        correct_thickness = pcr.exp(exp_approx_thick_correct)
        
        return correct_thickness
def inverse_gumbel(p_zero, loc, scale, return_period):
    """
    This function computes values for a given return period using the zero probability, location and shape
    parameters given. 
    """

    p = pcr.scalar(1. - 1./return_period)
    
    # p_residual is the probability density function of the population consisting of any values above zero
    p_residual = pcr.min(pcr.max((p - p_zero) / (1.0 - p_zero), 0.0), 1.0) 

    #~ # - alternative equation found on:  https://repos.deltares.nl/repos/Hydrology/trunk/GLOFRIS/src/rp_bias_corr.py (see the method inv_gumbel)
    #~ p_residual = np.minimum(np.maximum((p-p_zero)/(1-p_zero), 0), np.float64(1-1./1e9))  # I think this is the correct equation"""
    
    reduced_variate = -pcr.ln(-pcr.ln(p_residual))

    flvol = reduced_variate * scale + loc

    # infinite numbers can occur. reduce these to zero!
    # if any values become negative due to the statistical extrapolation, fix them to zero (may occur if the sample size for fitting was small and a small return period is requested)
    flvol = pcr.max(0.0, pcr.cover(flvol, 0.0))

    return flvol
    def __init__(self, clone_map_file,\
                       input_thickness_netcdf_file,\
                       input_thickness_var_name   ,\
                       margat_aquifers,\
                       tmp_directory,
                       landmask = None,
                       arcdegree = True):

        object.__init__(self)

        # aquifer table from Margat and van der Gun 
        self.margat_aquifers = margat_aquifers

        # clone map
        self.clone_map_file = clone_map_file
        self.clone_map_attr = vos.getMapAttributesALL(self.clone_map_file)
        if arcdegree == True:
            self.clone_map_attr['cellsize'] = round(self.clone_map_attr['cellsize'] * 360000.)/360000.
        xmin = self.clone_map_attr['xUL']
        xmax = xmin + self.clone_map_attr['cols'] * self.clone_map_attr['cellsize']
        ymax = self.clone_map_attr['yUL']
        ymin = ymax - self.clone_map_attr['rows'] * self.clone_map_attr['cellsize']
        pcr.setclone(self.clone_map_file)

        # temporary directory 
        self.tmp_directory = tmp_directory

        # thickness approximation (unit: m, file in netcdf with variable name = average 
        self.approx_thick = vos.netcdf2PCRobjCloneWithoutTime(input_thickness_netcdf_file,\
                                                              input_thickness_var_name,\
                                                              self.clone_map_file)
        # set minimum value to 0.1 mm
        self.approx_thick = pcr.max(0.0001, self.approx_thick)

        # rasterize the shape file 
        #               -        
        # save current directory and move to temporary directory
        current_dir = str(os.getcwd()+"/")
        os.chdir(str(self.tmp_directory))
        #
        cmd_line  = 'gdal_rasterize -a MARGAT '                                     # layer name = MARGAT
        cmd_line += '-te '+str(xmin)+' '+str(ymin)+' '+str(xmax)+' '+str(ymax)+ ' '       
        cmd_line += '-tr '+str(self.clone_map_attr['cellsize'])+' '+str(self.clone_map_attr['cellsize'])+' '
        cmd_line += str(margat_aquifers['shapefile'])+' '
        cmd_line += 'tmp.tif'
        print(cmd_line); os.system(cmd_line)
        #
        # make it nomial
        cmd_line = 'pcrcalc tmp.map = "nominal(tmp.tif)"' 
        print(cmd_line); os.system(cmd_line)
        #
        # make sure that the clone map is correct
        cmd_line = 'mapattr -c '+str(self.clone_map_file)+' tmp.map'
        print(cmd_line); os.system(cmd_line)
        #
        # read the map
        self.margat_aquifer_map = pcr.nominal(pcr.readmap("tmp.map"))
        #
        # clean temporary directory and return to the original directory
        vos.clean_tmp_dir(self.tmp_directory)
        os.chdir(current_dir)
        
        # extend the extent of each aquifer
        self.margat_aquifer_map = pcr.cover(self.margat_aquifer_map, 
                                  pcr.windowmajority(self.margat_aquifer_map, 1.25))

        # assign aquifer thickness, unit: m (lookuptable operation) 
        self.margat_aquifer_thickness = pcr.lookupscalar(margat_aquifers['txt_table'], self.margat_aquifer_map)
        self.margat_aquifer_thickness = pcr.ifthen(self.margat_aquifer_thickness > 0., \
                                                   self.margat_aquifer_thickness)
        #~ pcr.report(self.margat_aquifer_thickness,"thick.map"); os.system("aguila thick.map")

        # aquifer map
        self.margat_aquifer_map       = pcr.ifthen(self.margat_aquifer_thickness > 0., self.margat_aquifer_map)        
        
        # looping per aquifer: cirrecting or rescaling 
        aquifer_ids = np.unique(pcr.pcr2numpy(pcr.scalar(self.margat_aquifer_map), vos.MV))
        aquifer_ids = aquifer_ids[aquifer_ids > 0]
        aquifer_ids = aquifer_ids[aquifer_ids < 10000]
        self.rescaled_thickness = None
        for id in aquifer_ids:
            rescaled_thickness = self.correction_per_aquifer(id)
            try:
                self.rescaled_thickness = pcr.cover(self.rescaled_thickness, rescaled_thickness)
            except:
                self.rescaled_thickness = rescaled_thickness
        
        # integrating
        ln_aquifer_thickness  = self.mapFilling( pcr.ln(self.rescaled_thickness), pcr.ln(self.approx_thick) )
        self.aquifer_thickness = pcr.exp(ln_aquifer_thickness)
        #~ pcr.report(self.aquifer_thickness,"thick.map"); os.system("aguila thick.map")

        # cropping only in the landmask region
        if landmask == None: landmask = self.clone_map_file
        self.landmask = pcr.defined(vos.readPCRmapClone(landmask,self.clone_map_file,self.tmp_directory))
        #~ pcr.report(self.landmask,"test.map"); os.system("aguila test.map")

        self.aquifer_thickness = pcr.ifthen(self.landmask, self.aquifer_thickness)
Exemplo n.º 7
0
 def integralLogisticFunction(self, x):
     #-returns a tupple of two values holding the integral of the logistic functions
     # of (x) and (-x)
     logInt = pcr.ln(pcr.exp(-x) + 1)
     return logInt, x + logInt
Exemplo n.º 8
0
    def dynamic(self):
        """
          *Required*
          This is where all the time dependent functions are executed. Time dependent
          output should also be saved here.
        """
        # print 'useETPdata' , self.UseETPdata
        # Put the W3RA here. Stuff from W3RA_timestep_model.m
        # read meteo from file
        self.logger.debug("Running for: " + str(self.currentdatetime))
        self.PRECIP = pcr.cover(
            self.wf_readmap(self.PRECIP_mapstack, 0.0), pcr.scalar(0.0)
        )  # mm

        if self.UseETPdata == 1:
            self.TDAY = pcr.cover(
                self.wf_readmap(self.TDAY_mapstack, 10.0), pcr.scalar(10.0)
            )  # T in degC
            self.EPOT = pcr.cover(
                self.wf_readmap(self.EPOT_mapstack, 0.0), pcr.scalar(0.0)
            )  # mm
            self.WINDSPEED = pcr.cover(
                self.wf_readmap(self.WINDSPEED_mapstack, default=1.0), pcr.scalar(1.0)
            )
            self.AIRPRESS = pcr.cover(
                self.wf_readmap(self.AIRPRESS_mapstack, default=980.0),
                pcr.scalar(980.0),
            )
            # print "Using climatology for wind, air pressure and albedo."
        elif self.UseETPdata == 0:
            self.TMIN = pcr.cover(
                self.wf_readmap(self.TMIN_mapstack, 10.0), pcr.scalar(10.0)
            )  # T in degC
            self.TMAX = pcr.cover(
                self.wf_readmap(self.TMAX_mapstack, 10.0), pcr.scalar(10.0)
            )  # T in degC
            self.RAD = pcr.cover(
                self.wf_readmap(self.RAD_mapstack, 10.0), pcr.scalar(10.0)
            )  # W m-2 s-1
            self.WINDSPEED = pcr.cover(
                self.wf_readmap(self.WINDSPEED_mapstack, 10.0), pcr.scalar(10.0)
            )  # ms-1
            self.AIRPRESS = pcr.cover(
                self.wf_readmap(self.AIRPRESS_mapstack, 10.0), pcr.scalar(10.0)
            )  # Pa
            self.ALBEDO = pcr.cover(
                self.wf_readmapClimatology(self.ALBEDO_mapstack, default=0.1),
                pcr.scalar(0.1),
            )

        self.wf_multparameters()
        doy = self.currentdatetime.timetuple().tm_yday

        # conversion daylength
        pcr.setglobaloption("radians")
        m = pcr.scalar(1) - pcr.tan(
            (self.latitude * pcr.scalar(math.pi) / pcr.scalar(180))
        ) * pcr.tan(
            (
                (pcr.scalar(23.439) * pcr.scalar(math.pi) / pcr.scalar(180))
                * pcr.cos(
                    pcr.scalar(2)
                    * pcr.scalar(math.pi)
                    * (doy + pcr.scalar(9))
                    / pcr.scalar(365.25)
                )
            )
        )
        self.fday = pcr.min(
            pcr.max(
                pcr.scalar(0.02),
                pcr.scalar(
                    pcr.acos(
                        pcr.scalar(1)
                        - pcr.min(pcr.max(pcr.scalar(0), m), pcr.scalar(2))
                    )
                )
                / pcr.scalar(math.pi),
            ),
            pcr.scalar(1),
        )  # fraction daylength

        # Assign forcing and estimate effective meteorological variables

        Pg = self.PRECIP  # mm

        if self.UseETPdata == 1:
            Ta = self.TDAY  # T in degC
            T24 = self.TDAY  # T in degC
        elif self.UseETPdata == 0:
            Rg = pcr.max(
                self.RAD, pcr.scalar(0.0001)
            )  # already in W m-2 s-1; set minimum of 0.01 to avoid numerical problems
            Ta = self.TMIN + pcr.scalar(0.75) * (self.TMAX - self.TMIN)  # T in degC
            T24 = self.TMIN + pcr.scalar(0.5) * (self.TMAX - self.TMIN)  # T in degC
            pex = pcr.min(
                pcr.scalar(17.27) * (self.TMIN) / (pcr.scalar(237.3) + self.TMIN),
                pcr.scalar(10),
            )  # T in degC
            pe = pcr.min(
                pcr.scalar(610.8) * (pcr.exp(pex)), pcr.scalar(10000.0)
            )  # Mean actual vapour pressure, from dewpoint temperature
        # rescale factor because windspeed climatology is at 2m
        WindFactor = 1.0
        # u2 = pcr.scalar(WindFactor)*self.WINDSPEED*(pcr.scalar(1)-(pcr.scalar(1)-self.fday)*scalar(0.25))/self.fday
        self.u2 = (
            pcr.scalar(WindFactor)
            * self.WINDSPEED
            * (pcr.scalar(1) - (pcr.scalar(1) - self.fday) * pcr.scalar(0.25))
            / self.fday
        )
        pair = self.AIRPRESS  # already in Pa

        # diagnostic equations

        self.LAI1 = self.SLA1 * self.Mleaf1  # (5.3)
        self.LAI2 = self.SLA2 * self.Mleaf2  # (5.3)
        fveg1 = pcr.max(1 - pcr.exp(-self.LAI1 / self.LAIref1), 0.000001)  # (5.3)
        fveg2 = pcr.max(1 - pcr.exp(-self.LAI2 / self.LAIref2), 0.000001)

        # Vc = pcr.max(0,EVI-0.07)/fveg
        fsoil1 = 1 - fveg1
        fsoil2 = 1 - fveg2
        w01 = self.S01 / self.S0FC1  # (2.1)
        w02 = self.S02 / self.S0FC2
        ws1 = self.Ss1 / self.SsFC1  # (2.1)
        ws2 = self.Ss2 / self.SsFC2
        wd1 = self.Sd1 / self.SdFC1  # (2.1)
        wd2 = self.Sd2 / self.SdFC2  # (2.1)

        TotSnow1 = self.FreeWater1 + self.DrySnow1
        TotSnow2 = self.FreeWater2 + self.DrySnow2
        wSnow1 = self.FreeWater1 / (TotSnow1 + 1e-5)
        wSnow2 = self.FreeWater2 / (TotSnow2 + 1e-5)

        # Spatialise catchment fractions
        Sgfree = pcr.max(self.Sg, 0.0)
        # JS: Not sure if this is translated properly....
        # for i=1:par.Nhru
        fwater1 = pcr.min(0.005, (0.007 * self.Sr ** 0.75))
        fwater2 = pcr.min(0.005, (0.007 * self.Sr ** 0.75))
        fsat1 = pcr.min(
            1.0, pcr.max(pcr.min(0.005, 0.007 * self.Sr ** 0.75), Sgfree / self.Sgref)
        )
        fsat2 = pcr.min(
            1.0, pcr.max(pcr.min(0.005, 0.007 * self.Sr ** 0.75), Sgfree / self.Sgref)
        )
        Sghru1 = self.Sg
        Sghru2 = self.Sg

        # CALCULATION OF PET
        # Conversions and coefficients (3.1)
        pesx = pcr.min(
            (pcr.scalar(17.27) * Ta / (pcr.scalar(237.3) + Ta)), pcr.scalar(10)
        )
        pes = pcr.min(
            pcr.scalar((pcr.scalar(610.8)) * pcr.exp(pesx)), pcr.scalar(10000)
        )  # saturated vapour pressure
        # fRH = pe/pes  # relative air humidity                                  -------------- check
        cRE = 0.03449 + 4.27e-5 * Ta
        # Caero = self.fday*0.176*(1+Ta/209.1)*(pair-0.417*pe)*(1-fRH)         -------------- check
        # keps = 1.4e-3*((Ta/187)**2+Ta/107+1)*(6.36*pair+pe)/pes
        ga1 = self.ku2_1 * self.u2
        ga2 = self.ku2_2 * self.u2

        if self.UseETPdata == 1:
            self.E01 = pcr.max(self.EPOT, 0)
            self.E02 = pcr.max(self.EPOT, 0)
            keps = (
                0.655e-3 * pair / pes
            )  # See Appendix A3 (http://www.clw.csiro.au/publications/waterforahealthycountry/2010/wfhc-aus-water-resources-assessment-system.pdf) --------------------------------   check!

        elif self.UseETPdata == 0:
            # Aerodynamic conductance (3.7)

            ns_alb = self.ALBEDO
            Rgeff = Rg / self.fday
            # shortwave radiation balance (3.2)
            # alb_veg = 0.452*Vc
            # alb_soil = alb_wet+(alb_dry-alb_wet)*exp(-w0/w0ref_alb)
            # new equations for snow albedo
            alb_snow1 = 0.65 - 0.2 * wSnow1  # assumed; ideally some lit research needed
            alb_snow2 = 0.65 - 0.2 * wSnow2
            fsnow1 = pcr.min(
                1.0, 0.05 * TotSnow1
            )  # assumed; ideally some lit research needed
            fsnow2 = pcr.min(1.0, 0.05 * TotSnow2)
            # alb = fveg*alb_veg+(fsoil-fsnow)*alb_soil +fsnow*alb_snow
            # alb = albedo
            alb1 = (1 - fsnow1) * ns_alb + fsnow1 * alb_snow1
            alb2 = (1 - fsnow2) * ns_alb + fsnow2 * alb_snow2
            RSn1 = (1 - alb1) * Rgeff
            RSn2 = (1 - alb2) * Rgeff
            # long wave radiation balance (3.3 to 3.5)
            StefBolz = 5.67e-8
            Tkelv = Ta + 273.16
            self.RLin = (0.65 * (pe / Tkelv) ** 0.14) * StefBolz * Tkelv ** 4  # (3.3)
            RLout = StefBolz * Tkelv ** 4.0  # (3.4)
            self.RLn = self.RLin - RLout

            self.fGR1 = self.Gfrac_max1 * (1 - pcr.exp(-fsoil1 / self.fvegref_G1))
            self.fGR2 = self.Gfrac_max2 * (
                1 - pcr.exp(-fsoil2 / self.fvegref_G2)
            )  # (3.5)
            self.Rneff1 = (RSn1 + self.RLn) * (1 - self.fGR1)
            self.Rneff2 = (RSn2 + self.RLn) * (1 - self.fGR2)

            fRH = pe / pes  # relative air humidity
            Caero = (
                self.fday * 0.176 * (1 + Ta / 209.1) * (pair - 0.417 * pe) * (1 - fRH)
            )  # -------------- check
            keps = 1.4e-3 * ((Ta / 187) ** 2 + Ta / 107 + 1) * (6.36 * pair + pe) / pes

            #  Potential evaporation
            kalpha1 = 1 + Caero * ga1 / self.Rneff1
            kalpha2 = 1 + Caero * ga2 / self.Rneff2
            self.E01 = cRE * (1 / (1 + keps)) * kalpha1 * self.Rneff1 * self.fday
            self.E02 = cRE * (1 / (1 + keps)) * kalpha2 * self.Rneff2 * self.fday
            self.E01 = pcr.max(self.E01, 0)
            self.E02 = pcr.max(self.E02, 0)

        # CALCULATION OF ET FLUXES AND ROOT WATER UPTAKE
        # Root water uptake constraint (4.4)
        Usmax1 = pcr.max(
            0, self.Us01 * pcr.min(1, ws1 / self.wslimU1)
        )  ##0-waarden omdat ws1 bevat 0-waarden (zie regel 116)
        Usmax2 = pcr.max(
            0, self.Us02 * pcr.min(1, ws2 / self.wslimU2)
        )  ##0-waarden omdat ws2 bevat 0-waarden (zie regel 117)
        Udmax1 = pcr.max(
            0, self.Ud01 * pcr.min(1, wd1 / self.wdlimU1)
        )  ##0-waarden omdat wd1 bevat 0-waarden (zie regel 118)
        Udmax2 = pcr.max(
            0, self.Ud02 * pcr.min(1, wd2 / self.wdlimU2)
        )  ##0-waarden omdat wd2 bevat 0-waarden (zie regel 119)
        # U0max = pcr.max(0, Us0*min(1,w0/wslimU))
        U0max1 = pcr.scalar(0)
        U0max2 = pcr.scalar(0)
        Utot1 = pcr.max(Usmax1, pcr.max(Udmax1, U0max1))
        Utot2 = pcr.max(Usmax2, pcr.max(Udmax2, U0max2))

        # Maximum transpiration (4.3)
        Gsmax1 = self.cGsmax1 * self.Vc1
        gs1 = fveg1 * Gsmax1
        ft1 = 1 / (1 + (keps / (1 + keps)) * ga1 / gs1)
        Etmax1 = ft1 * self.E01
        Gsmax2 = self.cGsmax2 * self.Vc2
        gs2 = fveg2 * Gsmax2
        ft2 = 1 / (1 + (keps / (1 + keps)) * ga2 / gs2)
        Etmax2 = ft2 * self.E02

        # Actual transpiration (4.1)
        Et1 = pcr.min(Utot1, Etmax1)
        Et2 = pcr.min(Utot2, Etmax2)

        # # Root water uptake distribution (2.3)
        U01 = pcr.max(
            pcr.min((U0max1 / (U0max1 + Usmax1 + Udmax1)) * Et1, self.S01 - 1e-2), 0
        )
        Us1 = pcr.max(
            pcr.min((Usmax1 / (U0max1 + Usmax1 + Udmax1)) * Et1, self.Ss1 - 1e-2), 0
        )
        Ud1 = pcr.max(
            pcr.min((Udmax1 / (U0max1 + Usmax1 + Udmax1)) * Et1, self.Sd1 - 1e-2), 0
        )
        Et1 = U01 + Us1 + Ud1  # to ensure mass balance

        U02 = pcr.max(
            pcr.min((U0max2 / (U0max2 + Usmax2 + Udmax2)) * Et2, self.S02 - 1e-2), 0
        )
        Us2 = pcr.max(
            pcr.min((Usmax2 / (U0max2 + Usmax2 + Udmax2)) * Et2, self.Ss2 - 1e-2), 0
        )
        Ud2 = pcr.max(
            pcr.min((Udmax2 / (U0max2 + Usmax2 + Udmax2)) * Et2, self.Sd2 - 1e-2), 0
        )
        Et2 = U02 + Us2 + Ud2

        # Soil evaporation (4.5)
        self.S01 = pcr.max(0, self.S01 - U01)
        self.S02 = pcr.max(0, self.S02 - U02)
        w01 = self.S01 / self.S0FC1  # (2.1)
        w02 = self.S02 / self.S0FC2  # (2.1)
        fsoilE1 = self.FsoilEmax1 * pcr.min(1, w01 / self.w0limE1)
        fsoilE2 = self.FsoilEmax2 * pcr.min(1, w02 / self.w0limE2)
        Es1 = pcr.max(
            0, pcr.min(((1 - fsat1) * fsoilE1 * (self.E01 - Et1)), self.S01 - 1e-2)
        )
        Es2 = pcr.max(
            0, pcr.min(((1 - fsat2) * fsoilE2 * (self.E02 - Et2)), self.S02 - 1e-2)
        )
        # Groundwater evaporation (4.6)
        Eg1 = pcr.min((fsat1 - fwater1) * self.FsoilEmax1 * (self.E01 - Et1), Sghru1)
        Eg2 = pcr.min((fsat2 - fwater2) * self.FsoilEmax2 * (self.E02 - Et2), Sghru2)
        # Open water evaporation (4.7)
        Er1 = pcr.min(fwater1 * self.FwaterE1 * pcr.max(0, self.E01 - Et1), self.Sr)
        Er2 = pcr.min(fwater2 * self.FwaterE2 * pcr.max(0, self.E02 - Et2), self.Sr)
        # Rainfall interception evaporation (4.2)
        Sveg1 = self.S_sls1 * self.LAI1
        fER1 = self.ER_frac_ref1 * fveg1
        Pwet1 = -pcr.ln(1 - fER1 / fveg1) * Sveg1 / fER1
        Ei1 = pcr.scalar(Pg < Pwet1) * fveg1 * Pg + pcr.scalar(Pg >= Pwet1) * (
            fveg1 * Pwet1 + fER1 * (Pg - Pwet1)
        )

        Sveg2 = self.S_sls2 * self.LAI2
        fER2 = self.ER_frac_ref2 * fveg2
        Pwet2 = -pcr.ln(1 - fER2 / fveg2) * Sveg2 / fER2
        Ei2 = pcr.scalar(Pg < Pwet2) * fveg2 * Pg + pcr.scalar(Pg >= Pwet2) * (
            fveg2 * Pwet2 + fER2 * (Pg - Pwet2)
        )

        self.EACT1 = (Et1 + Es1 + Eg1 + Er1 + Ei1) * self.Fhru1
        self.EACT2 = (Et2 + Es2 + Eg2 + Er2 + Ei2) * self.Fhru2
        self.EACT = self.EACT1 + self.EACT2

        # HBV snow routine
        # Matlab: function [FreeWater,DrySnow,InSoil]=snow_submodel(Precipitation,Temperature,FreeWater,DrySnow)
        # derived from HBV-96 shared by Jaap Schellekens (Deltares) in May 2011
        # original in PCraster, adapted to Matlab by Albert van Dijk
        # HBV snow routine
        Pn1 = Pg - Ei1
        Pn2 = Pg - Ei2
        Precipitation1 = Pn1
        Precipitation2 = Pn2

        # Snow routine parameters
        # parameters
        # TODO: Check this, not sure if this works.......
        x = pcr.scalar(Pg)
        Cfmax1 = 0.6 * 3.75653 * pcr.scalar(x >= 0)
        Cfmax2 = 3.75653 * pcr.scalar(x >= 0)
        TT1 = -1.41934 * pcr.scalar(
            x >= 0
        )  # critical temperature for snowmelt and refreezing
        TT2 = -1.41934 * pcr.scalar(x >= 0)
        TTI1 = 1.00000 * pcr.scalar(
            x >= 0
        )  # defines interval in which precipitation falls as rainfall and snowfall
        TTI2 = 1.00000 * pcr.scalar(x >= 0)
        CFR1 = 0.05000 * pcr.scalar(
            x >= 0
        )  # refreezing efficiency constant in refreezing of freewater in snow
        CFR2 = 0.05000 * pcr.scalar(x >= 0)
        WHC1 = 0.10000 * pcr.scalar(x >= 0)
        WHC2 = 0.10000 * pcr.scalar(x >= 0)

        # Partitioning into fractions rain and snow
        Temperature = T24  # Dimmie, let op: tijdelijke regel!!
        RainFrac1 = pcr.max(0, pcr.min((Temperature - (TT1 - TTI1 / 2)) / TTI1, 1))
        RainFrac2 = pcr.max(0, pcr.min((Temperature - (TT2 - TTI2 / 2)) / TTI2, 1))
        SnowFrac1 = 1 - RainFrac1  # fraction of precipitation which falls as snow
        SnowFrac2 = 1 - RainFrac2

        # Snowfall/melt calculations
        SnowFall1 = SnowFrac1 * Precipitation1  # snowfall depth
        SnowFall2 = SnowFrac2 * Precipitation2
        RainFall1 = RainFrac1 * Precipitation1  # rainfall depth
        RainFall2 = RainFrac2 * Precipitation2
        PotSnowMelt1 = Cfmax1 * pcr.max(
            0, Temperature - TT1
        )  # Potential snow melt, based on temperature
        PotSnowMelt2 = Cfmax2 * pcr.max(0, Temperature - TT2)
        PotRefreezing1 = (
            Cfmax1 * CFR1 * pcr.max(TT1 - Temperature, 0)
        )  # Potential refreezing, based on temperature
        PotRefreezing2 = Cfmax2 * CFR2 * pcr.max(TT2 - Temperature, 0)
        Refreezing1 = pcr.min(PotRefreezing1, self.FreeWater1)  # actual refreezing
        Refreezing2 = pcr.min(PotRefreezing2, self.FreeWater2)
        SnowMelt1 = pcr.min(PotSnowMelt1, self.DrySnow1)  # actual snow melt
        SnowMelt2 = pcr.min(PotSnowMelt2, self.DrySnow2)
        self.DrySnow1 = (
            self.DrySnow1 + SnowFall1 + Refreezing1 - SnowMelt1
        )  # dry snow content
        self.DrySnow2 = self.DrySnow2 + SnowFall2 + Refreezing2 - SnowMelt2
        self.FreeWater1 = self.FreeWater1 - Refreezing1  # free water content in snow
        self.FreeWater2 = self.FreeWater2 - Refreezing2
        MaxFreeWater1 = self.DrySnow1 * WHC1
        MaxFreeWater2 = self.DrySnow2 * WHC2
        self.FreeWater1 = self.FreeWater1 + SnowMelt1 + RainFall1
        self.FreeWater2 = self.FreeWater2 + SnowMelt2 + RainFall2
        InSoil1 = pcr.max(
            self.FreeWater1 - MaxFreeWater1, 0
        )  # abundant water in snow pack which goes into soil
        InSoil2 = pcr.max(self.FreeWater2 - MaxFreeWater2, 0)
        self.FreeWater1 = self.FreeWater1 - InSoil1
        self.FreeWater2 = self.FreeWater2 - InSoil2
        # End of Snow Module

        # CALCULATION OF WATER BALANCES
        # surface water fluxes (2.2)
        NetInSoil1 = pcr.max(0, (InSoil1 - self.InitLoss1))
        NetInSoil2 = pcr.max(0, (InSoil2 - self.InitLoss2))
        Rhof1 = (1 - fsat1) * (NetInSoil1 / (NetInSoil1 + self.PrefR1)) * NetInSoil1
        Rhof2 = (1 - fsat2) * (NetInSoil2 / (NetInSoil2 + self.PrefR2)) * NetInSoil2
        Rsof1 = fsat1 * NetInSoil1
        Rsof2 = fsat2 * NetInSoil2
        QR1 = Rhof1 + Rsof1
        QR2 = Rhof2 + Rsof2
        I1 = InSoil1 - QR1
        I2 = InSoil2 - QR2
        # SOIL WATER BALANCES (2.1 & 2.4)
        # Topsoil water balance (S0)
        self.S01 = self.S01 + I1 - Es1 - U01
        self.S02 = self.S02 + I2 - Es2 - U02
        SzFC1 = self.S0FC1
        SzFC2 = self.S0FC2
        Sz1 = self.S01
        Sz2 = self.S02
        wz1 = pcr.max(1e-2, Sz1) / SzFC1
        wz2 = pcr.max(1e-2, Sz2) / SzFC2
        self.TMP = SzFC1

        # TODO: Check if this works
        fD1 = pcr.scalar(wz1 > 1) * pcr.max(self.FdrainFC1, 1 - 1 / wz1) + pcr.scalar(
            wz1 <= 1
        ) * self.FdrainFC1 * pcr.exp(self.beta1 * pcr.scalar(wz1 - 1))
        fD2 = pcr.scalar(wz2 > 1) * pcr.max(self.FdrainFC2, 1 - 1 / wz2) + pcr.scalar(
            wz2 <= 1
        ) * self.FdrainFC2 * pcr.exp(self.beta2 * pcr.scalar(wz2 - 1))
        Dz1 = pcr.max(0, pcr.min(fD1 * Sz1, Sz1 - 1e-2))
        Dz2 = pcr.max(0, pcr.min(fD2 * Sz2, Sz2 - 1e-2))
        D01 = Dz1
        D02 = Dz2
        self.S01 = self.S01 - D01
        self.S02 = self.S02 - D02
        # Shallow root zone water balance (Ss)
        self.Ss1 = self.Ss1 + D01 - Us1
        self.Ss2 = self.Ss2 + D02 - Us2
        SzFC1 = self.SsFC1
        SzFC2 = self.SsFC2
        Sz1 = self.Ss1
        Sz2 = self.Ss2
        wz1 = pcr.max(1e-2, Sz1) / SzFC1
        wz2 = pcr.max(1e-2, Sz2) / SzFC2
        fD1 = pcr.scalar(wz1 > 1) * pcr.max(self.FdrainFC1, 1 - 1 / wz1) + pcr.scalar(
            wz1 <= 1
        ) * self.FdrainFC1 * pcr.exp(self.beta1 * pcr.scalar(wz1 - 1))
        fD2 = pcr.scalar(wz2 > 1) * pcr.max(self.FdrainFC2, 1 - 1 / wz2) + pcr.scalar(
            wz2 <= 1
        ) * self.FdrainFC2 * pcr.exp(self.beta2 * pcr.scalar(wz2 - 1))
        Dz1 = pcr.max(0, pcr.min(fD1 * Sz1, Sz1 - 1e-2))
        Dz2 = pcr.max(0, pcr.min(fD2 * Sz2, Sz2 - 1e-2))
        Ds1 = Dz1
        Ds2 = Dz2
        self.Ss1 = self.Ss1 - Ds1
        self.Ss2 = self.Ss2 - Ds2
        # Deep root zone water balance (Sd) (2.6)
        self.Sd1 = self.Sd1 + Ds1 - Ud1
        self.Sd2 = self.Sd2 + Ds2 - Ud2
        SzFC1 = self.SdFC1
        SzFC2 = self.SdFC2
        Sz1 = self.Sd1
        Sz2 = self.Sd2
        wz1 = pcr.max(1e-2, Sz1) / SzFC1
        wz2 = pcr.max(1e-2, Sz2) / SzFC2
        fD1 = pcr.scalar(wz1 > 1) * pcr.max(self.FdrainFC1, 1 - 1 / wz1) + pcr.scalar(
            wz1 <= 1
        ) * self.FdrainFC1 * pcr.exp(self.beta1 * pcr.scalar(wz1 - 1))
        fD2 = pcr.scalar(wz2 > 1) * pcr.max(self.FdrainFC2, 1 - 1 / wz2) + pcr.scalar(
            wz2 <= 1
        ) * self.FdrainFC2 * pcr.exp(self.beta2 * pcr.scalar(wz2 - 1))
        Dz1 = pcr.max(0, pcr.min(fD1 * Sz1, Sz1 - 1e-2))
        Dz2 = pcr.max(0, pcr.min(fD2 * Sz2, Sz2 - 1e-2))
        Dd1 = Dz1
        Dd2 = Dz2
        self.Sd1 = self.Sd1 - Dd1
        self.Sd2 = self.Sd2 - Dd2
        Y1 = pcr.min(
            self.Fgw_conn1 * pcr.max(0, self.wdlimU1 * self.SdFC1 - self.Sd1),
            Sghru1 - Eg1,
        )
        Y2 = pcr.min(
            self.Fgw_conn2 * pcr.max(0, self.wdlimU2 * self.SdFC2 - self.Sd2),
            Sghru2 - Eg2,
        )
        # Y = Fgw_conn.*max(0,wdlimU.*SdFC-Sd); #nog matlab script
        self.Sd1 = self.Sd1 + Y1
        self.Sd2 = self.Sd2 + Y2

        # CATCHMENT WATER BALANCE
        # Groundwater store water balance (Sg) (2.5)
        NetGf = (self.Fhru1 * (Dd1 - Eg1 - Y1)) + (self.Fhru2 * (Dd2 - Eg2 - Y2))
        self.Sg = self.Sg + NetGf
        Sgfree = pcr.max(self.Sg, 0)
        Qg = pcr.min(Sgfree, (1 - pcr.exp(-self.K_gw)) * Sgfree)
        self.Sg = self.Sg - Qg

        # Surface water store water balance (Sr) (2.7)
        self.Sr = self.Sr + (self.Fhru1 * (QR1 - Er1)) + (self.Fhru2 * (QR2 - Er2)) + Qg
        self.Qtot = pcr.min(self.Sr, (1 - pcr.exp(-self.K_rout)) * self.Sr)
        self.Sr = self.Sr - self.Qtot

        # VEGETATION ADJUSTMENT (5)

        fveq1 = (
            (1 / pcr.max((self.E01 / Utot1) - 1, 1e-3))
            * (keps / (1 + keps))
            * (ga1 / Gsmax1)
        )
        fveq2 = (
            (1 / pcr.max((self.E02 / Utot2) - 1, 1e-3))
            * (keps / (1 + keps))
            * (ga2 / Gsmax2)
        )
        fvmax1 = 1 - pcr.exp(-self.LAImax1 / self.LAIref1)
        fvmax2 = 1 - pcr.exp(-self.LAImax2 / self.LAIref2)
        fveq1 = pcr.min(fveq1, fvmax1)
        fveq2 = pcr.min(fveq2, fvmax2)
        dMleaf1 = -pcr.ln(1 - fveq1) * self.LAIref1 / self.SLA1 - self.Mleaf1
        dMleaf2 = -pcr.ln(1 - fveq2) * self.LAIref2 / self.SLA2 - self.Mleaf2

        # Mleafnet1 = dMleaf1 * (dMleaf1/self.Tgrow1) + dMleaf1 * dMleaf1/self.Tsenc1
        # Mleafnet2 = dMleaf2 * (dMleaf1/self.Tgrow2) + dMleaf2 * dMleaf2/self.Tsenc2
        Mleafnet1 = (
            pcr.scalar(dMleaf1 > 0) * (dMleaf1 / self.Tgrow1)
            + pcr.scalar(dMleaf1 < 0) * dMleaf1 / self.Tsenc1
        )
        Mleafnet2 = (
            pcr.scalar(dMleaf2 > 0) * (dMleaf2 / self.Tgrow2)
            + pcr.scalar(dMleaf2 < 0) * dMleaf2 / self.Tsenc2
        )

        self.Mleaf1 = self.Mleaf1 + Mleafnet1
        self.Mleaf2 = self.Mleaf2 + Mleafnet2
        self.LAI1 = self.SLA1 * self.Mleaf1  # (5.3)
        self.LAI2 = self.SLA2 * self.Mleaf2

        # Updating diagnostics
        self.LAI1 = self.SLA1 * self.Mleaf1  # (5.3)
        self.LAI2 = self.SLA2 * self.Mleaf2
        fveg1 = 1 - pcr.exp(-self.LAI1 / self.LAIref1)  # (5.3)
        fveg2 = 1 - pcr.exp(-self.LAI2 / self.LAIref2)
        fsoil1 = 1 - fveg1
        fsoil2 = 1 - fveg2
        w01 = self.S01 / self.S0FC1  # (2.1)
        w02 = self.S02 / self.S0FC2
        ws1 = self.Ss1 / self.SsFC1  # (2.1)
        ws2 = self.Ss2 / self.SsFC2
        wd1 = self.Sd1 / self.SdFC1  # (2.1)
        wd2 = self.Sd2 / self.SdFC2
Exemplo n.º 9
0
    def initial(self):

        """
    *Required*

    Initial part of the model, executed only once. It reads all static model
    information (parameters) and sets-up the variables used in modelling.

    This function is required. The contents is free. However, in order to
    easily connect to other models it is advised to adhere to the directory
    structure used in the other models.

    """
        #: pcraster option to calculate with units or cells. Not really an issue
        #: in this model but always good to keep in mind.
        pcr.setglobaloption("unittrue")
        pcr.setglobaloption(
            "radians"
        )  # Needed as W3RA was originally written in matlab

        # SET GLBOAL PARAMETER VALUES (however not used in original script)
        # Nhru=2
        # K_gw_scale=0.0146
        # K_gw_shape=0.0709
        # K_rout_scale=0.1943
        # K_rout_int=0.0589
        # FdrainFC_scale=0.2909
        # FdrainFC_shape=0.5154
        # Sgref_scale=3.2220
        # Sgref_shape=3.2860
        # fday=0.5000
        self.timestepsecs = int(
            configget(self.config, "model", "timestepsecs", "86400")
        )
        
        self.reinit = int(configget(self.config, "run", "reinit", "0"))
        self.OverWriteInit = int(configget(self.config, "model", "OverWriteInit", "0"))
        
        self.UseETPdata = int(
            configget(self.config, "model", "UseETPdata", "1")
        )  #  1: Use ETP data, 0: Compute ETP from meteorological variables
        self.logger.debug("use DATA: " + str(self.UseETPdata))
        self.basetimestep = 86400
        self.SaveMapDir = self.Dir + "/" + self.runId + "/outmaps"

        # Define here the W3RA mapstacks (best to read these via netcdf)

        self.TMAX_mapstack = self.Dir + configget(
            self.config, "inputmapstacks", "TMAX", "/inmaps/TMAX"
        )
        self.TMIN_mapstack = self.Dir + configget(
            self.config, "inputmapstacks", "TMIN", "/inmaps/TMIN"
        )
        self.TDAY_mapstack = self.Dir + configget(
            self.config, "inputmapstacks", "TDAY", "/inmaps/TDAY"
        )
        self.EPOT_mapstack = self.Dir + configget(
            self.config, "inputmapstacks", "EPOT", "/inmaps/EPOT"
        )
        self.PRECIP_mapstack = self.Dir + configget(
            self.config, "inputmapstacks", "PRECIP", "/inmaps/PRECIP"
        )
        self.RAD_mapstack = self.Dir + configget(
            self.config, "inputmapstacks", "RAD", "/inmaps/RAD"
        )
        # self.WINDSPEED_mapstack=self.Dir + configget(self.config,"inputmapstacks","WINDSPEED","/inmaps/ClimatologyMapFiles/WINDS/WNDSPEED")
        # self.AIRPRESS_mapstack=self.Dir + configget(self.config,"inputmapstacks","AIRPRESS","/inmaps/ClimatologyMapFiles/AIRPRESS/AIRPRESS")
        self.ALBEDO_mapstack = self.Dir + configget(
            self.config,
            "inputmapstacks",
            "ALBEDO",
            "/inmaps/ClimatologyMapFiles/ALBEDO/ALBEDO",
        )
        self.WINDSPEED_mapstack = self.Dir + configget(
            self.config, "inputmapstacks", "WINDSPEED", "/inmaps/WIND"
        )
        self.AIRPRESS_mapstack = self.Dir + configget(
            self.config, "inputmapstacks", "AIRPRESS", "/inmaps/PRES"
        )

        self.Altitude = pcr.readmap(self.Dir + "/staticmaps/wflow_dem")

        self.latitude = pcr.ycoordinate(pcr.boolean(self.Altitude))

        # Add reading of parameters here

        self.K_gw = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/k_gw.map"), 0.0, fail=True
        )
        self.K_rout = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/k_rout.map"), 0.0, fail=True
        )
        self.Sgref = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/sgref.map"), 0.0, fail=True
        )
        self.alb_dry1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/alb_dry.map"), 0.0, fail=True
        )
        self.alb_wet1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/alb_wet.map"), 0.0, fail=True
        )
        self.beta1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/beta.map"), 0.0, fail=True
        )
        self.cGsmax1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/cgsmax.map"), 0.0, fail=True
        )
        self.ER_frac_ref1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/er_frac_ref.map"), 0.0, fail=True
        )
        self.FdrainFC1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/fdrainfc.map"), 0.0, fail=True
        )
        self.Fgw_conn1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/fgw_conn.map"), 0.0, fail=True
        )
        self.Fhru1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/fhru.map"), 0.0, fail=True
        )
        self.SLA1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/sla.map"), 0.0, fail=True
        )
        self.LAIref1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/lairef.map"), 0.0, fail=True
        )
        self.FsoilEmax1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/fsoilemax.map"), 0.0, fail=True
        )
        self.fvegref_G1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/fvegref_g.map"), 0.0, fail=True
        )
        self.FwaterE1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/fwatere.map"), 0.0, fail=True
        )
        self.Gfrac_max1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/gfrac_max.map"), 0.0, fail=True
        )
        self.hveg1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/hveg.map"), 0.0, fail=True
        )
        self.InitLoss1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/initloss.map"), 0.0, fail=True
        )
        self.LAImax1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/laimax.map"), 0.0, fail=True
        )
        self.PrefR1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/prefr.map"), 0.0, fail=True
        )
        self.S_sls1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/s_sls.map"), 0.0, fail=True
        )
        self.S0FC1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/s0fc.map"), 0.0, fail=True
        )
        self.SsFC1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/ssfc.map"), 0.0, fail=True
        )
        self.SdFC1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/sdfc.map"), 0.0, fail=True
        )
        self.Vc1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/vc.map"), 0.0, fail=True
        )
        self.w0ref_alb1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/w0ref_alb.map"), 0.0, fail=True
        )
        self.Us01 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/us0.map"), 0.0, fail=True
        )
        self.Ud01 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/ud0.map"), 0.0, fail=True
        )
        self.wslimU1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/wslimu.map"), 0.0, fail=True
        )
        self.wdlimU1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/wdlimu.map"), 0.0, fail=True
        )
        self.w0limE1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/w0lime.map"), 0.0, fail=True
        )
        self.Tgrow1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/tgrow.map"), 0.0, fail=True
        )
        self.Tsenc1 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/tsenc.map"), 0.0, fail=True
        )

        self.alb_dry2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/alb_dry2.map"), 0.0, fail=True
        )
        self.alb_wet2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/alb_wet2.map"), 0.0, fail=True
        )
        self.beta2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/beta2.map"), 0.0, fail=True
        )
        self.cGsmax2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/cgsmax2.map"), 0.0, fail=True
        )
        self.ER_frac_ref2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/er_frac_ref2.map"), 0.0, fail=True
        )
        self.FdrainFC2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/fdrainfc2.map"), 0.0, fail=True
        )
        self.Fgw_conn2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/fgw_conn2.map"), 0.0, fail=True
        )
        self.Fhru2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/fhru2.map"), 0.0, fail=True
        )
        self.SLA2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/sla2.map"), 0.0, fail=True
        )
        self.LAIref2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/lairef2.map"), 0.0, fail=True
        )
        self.FsoilEmax2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/fsoilemax2.map"), 0.0, fail=True
        )
        self.fvegref_G2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/fvegref_g2.map"), 0.0, fail=True
        )
        self.FwaterE2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/fwatere2.map"), 0.0, fail=True
        )
        self.Gfrac_max2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/gfrac_max2.map"), 0.0, fail=True
        )
        self.hveg2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/hveg2.map"), 0.0, fail=True
        )
        self.InitLoss2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/initloss2.map"), 0.0, fail=True
        )
        self.LAImax2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/laimax2.map"), 0.0, fail=True
        )
        self.PrefR2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/prefr2.map"), 0.0, fail=True
        )
        self.S_sls2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/s_sls2.map"), 0.0, fail=True
        )
        self.S0FC2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/s0fc2.map"), 0.0, fail=True
        )
        self.SsFC2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/ssfc2.map"), 0.0, fail=True
        )
        self.SdFC2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/sdfc2.map"), 0.0, fail=True
        )
        self.Vc2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/vc2.map"), 0.0, fail=True
        )
        self.w0ref_alb2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/w0ref_alb2.map"), 0.0, fail=True
        )
        self.Us02 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/us02.map"), 0.0, fail=True
        )
        self.Ud02 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/ud02.map"), 0.0, fail=True
        )
        self.wslimU2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/wslimu2.map"), 0.0, fail=True
        )
        self.wdlimU2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/wdlimu2.map"), 0.0, fail=True
        )
        self.w0limE2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/w0lime2.map"), 0.0, fail=True
        )
        self.Tgrow2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/tgrow2.map"), 0.0, fail=True
        )
        self.Tsenc2 = self.wf_readmap(
            os.path.join(self.Dir, "staticmaps/tsenc2.map"), 0.0, fail=True
        )

        self.wf_multparameters()
        # Static, for the computation of Aerodynamic conductance (3.7)
        self.fh1 = pcr.ln(813.0 / self.hveg1 - 5.45)
        self.fh2 = pcr.ln(813.0 / self.hveg2 - 5.45)
        self.ku2_1 = 0.305 / (self.fh1 * (self.fh1 + 2.3))
        self.ku2_2 = 0.305 / (self.fh2 * (self.fh2 + 2.3))

        self.logger.info("Starting Dynamic run...")
	def integralLogisticFunction(self,x):
		#-returns a tupple of two values holding the integral of the logistic functions
		# of (x) and (-x)
		logInt=pcr.ln(pcr.exp(-x)+1)
		return logInt,x+logInt