Exemplo n.º 1
0
def valueReport(val,valName,outDir):
    #-return global and country values
    #-open text files    
    valNameFile= '%s\\%s.txt' % (outDir,valName)
    if year == staYear and month == staMonth:
        valName= open(valNameFile,'w')
    else:
        valName= open(valNameFile,'a') 
    #-calculate country value (km3/year)
    cntValue= pcr.areatotal(val,country)/conv
    for nrCnt in range(cntTot+1):
        if year == staYear and month == staMonth:
            valName.write('%d ' % (nrCnt))
    for nrCnt in range(cntTot+1):
        cntPoint= pcr.ifthen(countryLocations==int(nrCnt),cntValue)
        cntPoint= pcr.cellvalue(pcr.maptotal(cntPoint),int(1))[0]
        if nrCnt==int(0):
            valName.write('\n%04d %02d ' % (year,month))
        else:
            valName.write('%02f ' % (cntPoint))
    #-calculate global total (km3/year)
    glbValue= pcr.maptotal(val)/conv
    glbPoint= pcr.cellvalue(glbValue,int(1))[0]
    valName.write('%02f' % (glbPoint))
    #-close text files
    valName.close()
    return cntValue,glbValue,valName
Exemplo n.º 2
0
    def sample(self, expression):
        """
    Sampling the current values of 'expression' at the given locations for the current timestep
    """

        arrayRowPos = self._userModel.currentTimeStep(
        ) - self._userModel.firstTimeStep()

        #if isinstance(expression, float):
        #  expression = pcraster.scalar(expression)

        try:
            # store the data type for tss file header
            if self._spatialDatatype == None:
                self._spatialDatatype = str(expression.dataType())
        except AttributeError as e:
            datatype, sep, tail = str(e).partition(" ")
            msg = "Argument must be a PCRaster map, type %s given. If necessary use data conversion functions like scalar()" % (
                datatype)
            raise AttributeError(msg)

        if self._spatialIdGiven:
            if expression.dataType() == pcraster.Scalar or expression.dataType(
            ) == pcraster.Directional:
                tmp = pcraster.areaaverage(pcraster.spatial(expression),
                                           pcraster.spatial(self._spatialId))
            else:
                tmp = pcraster.areamajority(pcraster.spatial(expression),
                                            pcraster.spatial(self._spatialId))

            col = 0
            for cellIndex in self._sampleAddresses:
                value, valid = pcraster.cellvalue(tmp, cellIndex)
                if not valid:
                    value = Decimal("NaN")

                self._sampleValues[arrayRowPos][col] = value
                col += 1
        else:
            if expression.dataType() == pcraster.Scalar or expression.dataType(
            ) == pcraster.Directional:
                tmp = pcraster.maptotal(pcraster.spatial(expression))\
                      / pcraster.maptotal(pcraster.scalar(pcraster.defined(pcraster.spatial(expression))))
            else:
                tmp = pcraster.mapmaximum(pcraster.maptotal(pcraster.areamajority(pcraster.spatial(expression),\
                      pcraster.spatial(pcraster.nominal(1)))))

            value, valid = pcraster.cellvalue(tmp, 1)
            if not valid:
                value = Decimal("NaN")

            self._sampleValues[arrayRowPos] = value

        if self._userModel.currentTimeStep() == self._userModel.nrTimeSteps():
            self._writeTssFile()
Exemplo n.º 3
0
  def sample(self, expression):
    """
    Sampling the current values of 'expression' at the given locations for the current timestep
    """

    arrayRowPos = self._userModel.currentTimeStep() - self._userModel.firstTimeStep()

    #if isinstance(expression, float):
    #  expression = pcraster.scalar(expression)

    try:
      # store the data type for tss file header
      if self._spatialDatatype == None:
        self._spatialDatatype = str(expression.dataType())
    except AttributeError as e:
      datatype, sep, tail = str(e).partition(" ")
      msg = "Argument must be a PCRaster map, type %s given. If necessary use data conversion functions like scalar()" % (datatype)
      raise AttributeError(msg)

    if self._spatialIdGiven:
      if expression.dataType() == pcraster.Scalar or expression.dataType() == pcraster.Directional:
        tmp = pcraster.areaaverage(pcraster.spatial(expression), pcraster.spatial(self._spatialId))
      else:
        tmp = pcraster.areamajority(pcraster.spatial(expression), pcraster.spatial(self._spatialId))

      col = 0
      for cellIndex in self._sampleAddresses:
        value, valid = pcraster.cellvalue(tmp, cellIndex)
        if not valid:
          value = Decimal("NaN")

        self._sampleValues[arrayRowPos][col] = value
        col += 1
    else:
      if expression.dataType() == pcraster.Scalar or expression.dataType() == pcraster.Directional:
         tmp = pcraster.maptotal(pcraster.spatial(expression))\
               / pcraster.maptotal(pcraster.scalar(pcraster.defined(pcraster.spatial(expression))))
      else:
         tmp = pcraster.mapmaximum(pcraster.maptotal(pcraster.areamajority(pcraster.spatial(expression),\
               pcraster.spatial(pcraster.nominal(1)))))

      value, valid = pcraster.cellvalue(tmp, 1)
      if not valid:
        value = Decimal("NaN")

      self._sampleValues[arrayRowPos] = value

    if self._userModel.currentTimeStep() == self._userModel.nrTimeSteps():
       self._writeTssFile()
Exemplo n.º 4
0
def getMinMaxMean(mapFile,ignoreEmptyMap=False):
    mn = pcr.cellvalue(pcr.mapminimum(mapFile),1)[0]
    mx = pcr.cellvalue(pcr.mapmaximum(mapFile),1)[0]
    nrValues = pcr.cellvalue(pcr.maptotal(pcr.scalar(pcr.defined(mapFile))), 1 ) [0] #/ getNumNonMissingValues(mapFile)
    if nrValues == 0.0 and ignoreEmptyMap: 
        return 0.0,0.0,0.0
    else:
        return mn,mx,(getMapTotal(mapFile) / nrValues)
Exemplo n.º 5
0
def getMinMaxMean(mapFile,ignoreEmptyMap=False):
    mn = pcr.cellvalue(pcr.mapminimum(mapFile),1)[0]
    mx = pcr.cellvalue(pcr.mapmaximum(mapFile),1)[0]
    nrValues = pcr.cellvalue(pcr.maptotal(pcr.scalar(pcr.defined(mapFile))), 1 ) [0] #/ getNumNonMissingValues(mapFile)
    if nrValues == 0.0 and ignoreEmptyMap: 
        return 0.0,0.0,0.0
    else:
        return mn,mx,(getMapTotal(mapFile) / nrValues)
Exemplo n.º 6
0
 def budgetCheck(self, sample, timestep):
     # NOTE this is only valid if addition,subtraction are invoked ONCE EACH TIME STEP
     # NOTE use of maptotal, in case of ldd not covering whole area, absolute values may not be
     # comparable with other budgets.
     self.actualAdditionCum = pcr.scalar(self.actualAdditionCum +
                                         self.actualInfiltrationFlux *
                                         self.timeStepDuration)
     self.increaseInStore = self.store - self.initialStore
     budget = pcr.maptotal(self.actualAdditionCum - self.increaseInStore)
     pcr.report(budget, pcrfw.generateNameST('B-inf', sample, timestep))
     return self.increaseInStore
 def budgetCheck(self, sample, timestep):
     # NOTE this is only valid if addition,subtraction and lateral flow are invoked ONCE EACH TIME STEP
     # NOTE use of maptotal, in case of ldd not covering whole area, absolute values may not be
     # comparable with other budgets.
     # note self.changeAmount can be positive or negative and thus self.actualAdditionCum, too
     self.actualAdditionCum = self.actualAdditionCum + self.changeAmount
     self.increaseInStore = self.store - self.initialStore
     # budget=catchmenttotal(self.actualAdditionCum-self.actualAbstractionCum-self.increaseInStore)
     budget = pcr.maptotal(self.actualAdditionCum - self.increaseInStore)
     pcr.report(budget, pcrfw.generateNameST('B-sur', sample, timestep))
     return self.increaseInStore
 def budgetCheck(self, sample, timestep):
     # this should include setMaximumStore as this may result in throwing away of water
     # NOTE this is only valid if addition,subtraction and lateral flow are invoked ONCE EACH TIME STEP
     # NOTE use of maptotal, in case of ldd not covering whole area, absolute values may not be
     # comparable with other budgets.
     self.actualAdditionCum = self.actualAdditionCum + self.actualAdditionFlux * self.timeStepDuration
     self.actualAbstractionCum = self.actualAbstractionCum + self.actualAbstractionFlux * self.timeStepDuration
     self.increaseInStore = self.store - self.initialStore
     # budget=catchmenttotal(self.actualAdditionCum-self.actualAbstractionCum-self.increaseInStore)
     budget = pcr.maptotal(self.actualAdditionCum -
                           self.actualAbstractionCum - self.increaseInStore)
     pcr.report(budget, pcrfw.generateNameST('B-int', sample, timestep))
     return self.increaseInStore
Exemplo n.º 9
0
 def updateWeight(self):
     print('#### UPDATEWEIGHTING')
     print('filter period', self.filterPeriod())
     print('filter timestep ',
           self._d_filterTimesteps[self.filterPeriod() - 1])
     print('lijst ', self._d_filterTimesteps)
     print('filter sample ', self.currentSampleNumber())
     modelledData = self.readmap('Rqs')
     observations = self.readDeterministic('observations/Rqs')
     #observations=pcr.ifthen(pit(self.ldd) != 0,syntheticData)
     measurementErrorSD = 3.0 * observations + 1.0
     sum = pcr.maptotal(((modelledData - observations)**2) /
                        (2.0 * (measurementErrorSD**2)))
     weight = pcr.exp(-sum)
     weightFloatingPoint, valid = pcr.cellvalue(weight, 1)
     return weightFloatingPoint
Exemplo n.º 10
0
def getMinMaxMean(mapFile):
    mn = pcr.cellvalue(pcr.mapminimum(mapFile),1)[0]
    mx = pcr.cellvalue(pcr.mapmaximum(mapFile),1)[0]
    nrValues  = pcr.cellvalue(pcr.maptotal(pcr.scalar(pcr.defined(mapFile))), 1 ) [0] #/ getNumNonMissingValues(mapFile)
    return mn,mx,(getMapTotal(mapFile) / nrValues)
Exemplo n.º 11
0
def getMapTotal(mapFile):
    ''' outputs the sum of all values in a map file '''

    total, valid= pcr.cellvalue(pcr.maptotal(mapFile),1)
    return total
Exemplo n.º 12
0
def getMinMaxMean(mapFile):
    mn = pcr.cellvalue(pcr.mapminimum(mapFile),1)[0]
    mx = pcr.cellvalue(pcr.mapmaximum(mapFile),1)[0]
    nrValues  = pcr.cellvalue(pcr.maptotal(pcr.scalar(pcr.defined(mapFile))), 1 ) [0] #/ getNumNonMissingValues(mapFile)
    return mn,mx,(getMapTotal(mapFile) / nrValues)
Exemplo n.º 13
0
def getMapTotal(mapFile):
    ''' outputs the sum of all values in a map file '''

    total, valid= pcr.cellvalue(pcr.maptotal(mapFile),1)
    return total
Exemplo n.º 14
0
 def dynamic(self):
     #####################
     # * dynamic section #
     #####################
     #-evaluation of the current date: return current month and the time step used
     #-reading in fluxes over land and water area for current time step [m/d]
     # and read in reservoir demand and surface water extraction [m3]
     try:
         self.landSurfaceQ = clippedRead.get(
             pcrm.generateNameT(landSurfaceQFileName,
                                self.currentTimeStep()))
     except:
         pass
     try:
         self.potWaterSurfaceQ = clippedRead.get(
             pcrm.generateNameT(waterSurfaceQFileName,
                                self.currentTimeStep()))
     except:
         pass
     #-surface water extraction and reservoir demand currently set to zero, should
     # be computed automatically and updated to reservoirs
     self.potSurfaceWaterExtraction = pcr.spatial(pcr.scalar(0.))
     #self.waterBodies.demand=  #self.reservoirDemandTSS.assignID(self.waterBodies.ID,self.currentTimeStep(),0.)*self.timeSec
     #-initialization of cumulative values of actual water extractions
     self.actWaterSurfaceQ = pcr.spatial(pcr.scalar(0.))
     self.actSurfaceWaterExtraction = pcr.spatial(pcr.scalar(0.))
     #-definition of sub-loop for routing scheme - explicit scheme has to satisfy Courant condition
     timeLimit= pcr.cellvalue(pcr.mapminimum((pcr.cover(pcr.ifthen(self.waterBodies.distribution == 0,\
      self.channelLength/self.flowVelocity),\
       self.timeSec/self.nrIterDefault)*self.timeSec/self.nrIterDefault)**0.5),1)[0]
     nrIter = int(self.timeSec / timeLimit)
     nrIter = min(nrIter, int(self.timeSec / 300.))
     while float(self.timeSec / nrIter) % 1 <> 0:
         nrIter += 1
     deltaTime = self.timeSec / nrIter
     #-sub-loop for current time step
     if self.currentDate.day == 1 or nrIter >= 24:
         print '\n*\tprocessing %s, currently using %d substeps of %d seconds\n' % \
          (self.currentDate.date(),nrIter,deltaTime)
     #-update discharge and storage
     for nrICur in range(nrIter):
         #-initializing discharge for the current sub-timestep and fill in values
         # for channels and at outlets of waterbodies
         # * channels *
         estQ= pcr.ifthenelse((self.actualStorage > 0.) & (self.waterBodies.distribution == 0) ,\
          (self.wettedArea/self.alphaQ)**(1./self.betaQ),0.)
         #estQ= pcr.ifthenelse((self.actualStorage > 0.) & (self.waterBodies.distribution == 0) ,\
         #0.5*(self.Q+(self.wettedArea/self.alphaQ)**(1./self.betaQ)),0.)
         #estQ= pcr.min(estQ,self.actualStorage/deltaTime)
         self.report(estQ, 'results/qest')
         self.Q = pcr.spatial(pcr.scalar(0.))
         self.Q= pcr.ifthenelse(self.waterBodies.distribution == 0,\
          pcr.kinematic(self.channelLDD,estQ,0.,self.alphaQ,\
           self.betaQ,1,deltaTime,self.channelLength),self.Q)
         # * water bodies *
         self.waterBodies.dischargeUpdate()
         self.Q = self.waterBodies.returnMapValue(self.Q,
                                                  self.waterBodies.actualQ)
         #-fluxes and resulting change in storage: first the local fluxes are evaluated
         # and aggregated over the water bodies where applicable; this includes the specific runoff [m/day/m2]
         # from input and the estimated extraction from surface water as volume per day [m3/day];
         # specific runoff from the land surface is always positive whereas the fluxes over the water surface
         # are potential, including discharge, and are adjusted to match the availabe storage; to this end,
         # surface water storage and fluxes over water bodies are totalized and assigned to the outlet;
         # discharge is updated in a separate step, after vertical fluxes are compared to the actual storage
         deltaActualStorage= ((self.landFraction*self.landSurfaceQ+\
          self.waterFraction*self.potWaterSurfaceQ)*self.cellArea-\
          self.potSurfaceWaterExtraction)*float(self.duration)/nrIter
         deltaActualStorage= pcr.ifthenelse(self.waterBodies.distribution != 0,\
          pcr.ifthenelse(self.waterBodies.location != 0,\
           pcr.areatotal(deltaActualStorage,self.waterBodies.distribution),0),\
            deltaActualStorage)
         adjustmentRatio= pcr.ifthenelse(deltaActualStorage < 0.,\
          pcr.min(1.,-self.actualStorage/deltaActualStorage),1.)
         self.actWaterSurfaceQ += adjustmentRatio * self.potWaterSurfaceQ
         self.actSurfaceWaterExtraction += adjustmentRatio * self.actSurfaceWaterExtraction
         deltaActualStorage *= adjustmentRatio
         #-local water balance check
         if testLocalWaterBalance:
             differenceActualStorage = self.actualStorage
             differenceActualStorage += deltaActualStorage
         #-overall water balance check: net input
         self.cumulativeDeltaStorage += pcr.catchmenttotal(
             deltaActualStorage, self.LDD)
         #-update storage first with local changes, then balance discharge with storage and update storage
         # with lateral flow and return value to water bodies
         self.actualStorage += deltaActualStorage
         self.actualStorage = pcr.max(0., self.actualStorage)
         self.Q = pcr.min(self.Q, self.actualStorage / deltaTime)
         deltaActualStorage = (-self.Q +
                               pcr.upstream(self.LDD, self.Q)) * deltaTime
         deltaActualStorage= pcr.ifthenelse(self.waterBodies.distribution != 0,\
          pcr.ifthenelse(self.waterBodies.location != 0,\
           pcr.areatotal(deltaActualStorage,self.waterBodies.distribution),0),\
            deltaActualStorage)
         self.actualStorage += deltaActualStorage
         self.actualStorage = pcr.max(0., self.actualStorage)
         self.waterBodies.actualStorage = self.waterBodies.retrieveMapValue(
             self.actualStorage)
         #-flooded fraction returned
         floodedFraction,floodedDepth,\
           self.wettedArea,self.alphaQ= self.kinAlphaComposite(self.actualStorage,self.floodplainMask)
         self.wettedArea= self.waterBodies.returnMapValue(self.wettedArea,\
          self.waterBodies.channelWidth+2.*self.waterBodies.updateWaterHeight())
         self.waterFraction= pcr.ifthenelse(self.waterBodies.distribution == 0,\
          pcr.max(self.waterFractionMask,floodedFraction),self.waterFractionMask)
         self.landFraction = pcr.max(0., 1. - self.waterFraction)
         self.flowVelocity = pcr.ifthenelse(self.wettedArea > 0,
                                            self.Q / self.wettedArea, 0.)
         #-local water balance check
         if testLocalWaterBalance:
             differenceActualStorage += deltaActualStorage
             differenceActualStorage -= self.actualStorage
             totalDifference = pcr.cellvalue(
                 pcr.maptotal(differenceActualStorage), 1)[0]
             minimumDifference = pcr.cellvalue(
                 pcr.mapminimum(differenceActualStorage), 1)[0]
             maximumDifference = pcr.cellvalue(
                 pcr.mapmaximum(differenceActualStorage), 1)[0]
             if abs(totalDifference) > 1.e-3:
                 print 'water balance error: total %e; min %e; max %e' %\
                  (totalDifference,minimumDifference,maximumDifference)
                 if reportLocalWaterBalance:
                     pcr.report(differenceActualStorage,
                                'mbe_%s.map' % self.currentDate.date())
         #-overall water balance check: updating cumulative discharge and total storage [m3]
         self.totalDischarge += self.Q * deltaTime
         self.totalStorage = pcr.catchmenttotal(self.actualStorage,
                                                self.LDD)
     #-check on occurrence of last day and report mass balance
     if self.currentDate == self.endDate:
         #-report initial maps
         pcr.report(self.Q, self.QIniMap)
         pcr.report(self.actualStorage, self.actualStorageIniMap)
         #-return relative and absolute water balance error per cell and
         # as total at basin outlets
         self.totalDischarge= pcr.ifthen((self.waterBodies.distribution == 0) | \
          (self.waterBodies.location != 0),self.totalDischarge)
         self.cumulativeDeltaStorage= pcr.ifthen((self.waterBodies.distribution == 0) | \
          (self.waterBodies.location != 0),self.cumulativeDeltaStorage)
         massBalanceError= self.totalStorage+self.totalDischarge-\
          self.cumulativeDeltaStorage
         relMassBalanceError = 1. + pcr.ifthenelse(
             self.cumulativeDeltaStorage <> 0.,
             massBalanceError / self.cumulativeDeltaStorage, 0.)
         totalMassBalanceError= pcr.cellvalue(pcr.maptotal(pcr.ifthen(self.basinOutlet,\
          massBalanceError)),1)[0]
         totalCumulativeDeltaStorage= pcr.cellvalue(pcr.maptotal(pcr.ifthen(self.basinOutlet,\
          self.cumulativeDeltaStorage)),1)[0]
         if totalCumulativeDeltaStorage > 0:
             totalRelativeMassBalanceError = 1. + totalMassBalanceError / totalCumulativeDeltaStorage
         else:
             totalRelativeMassBalanceError = 1.
         #-report maps and echo value
         pcr.report(massBalanceError, mbeFileName)
         pcr.report(relMassBalanceError, mbrFileName)
         print '\n*\ttotal global mass balance error [m3]: %8.3g' % totalMassBalanceError
         print '\n*\trelative global mass balance error [-]: %5.3f' % totalRelativeMassBalanceError
         #-echo to screen: total mass balance error and completion of run
         print '\trun completed'
     #-end of day: return states and fluxes
     #-get surface water attributes?
     if getSurfaceWaterAttributes:
         #-compute the following secondary variables:
         # surface water area [m2]: area given dynamic surface water fraction
         # residence time [days]: volume over discharge, assigned -1 in case discharge is zero
         # surface water depth [m], weighed by channel and floodplain volume
         surfaceWaterArea = self.waterFraction * self.cellArea
         surfaceWaterArea= pcr.ifthenelse(self.waterBodies.distribution != 0,\
           pcr.ifthenelse(self.waterBodies.location != 0,\
            pcr.areatotal(surfaceWaterArea,self.waterBodies.distribution),0),\
             surfaceWaterArea)
         surfaceWaterResidenceTime = pcr.ifthenelse(
             self.Q > 0., self.actualStorage / (self.Q * self.timeSec), -1)
         surfaceWaterDepth= pcr.ifthenelse(self.actualStorage > 0.,\
          pcr.max(0.,self.actualStorage-self.channelStorageCapacity)**2/\
           (self.actualStorage*surfaceWaterArea),0.)
         surfaceWaterDepth+= pcr.ifthenelse(self.actualStorage > 0.,\
          pcr.min(self.channelStorageCapacity,self.actualStorage)**2/(self.waterFractionMask*\
          self.cellArea*self.actualStorage),0.)
         #-reports: values at outlet of lakes or reservoirs are assigned to their full extent
         self.report(pcr.ifthenelse(self.waterBodies.distribution != 0,\
          pcr.areamaximum(surfaceWaterArea,self.waterBodies.distribution),surfaceWaterArea),\
           surfaceWaterAreaFileName)
         self.report(pcr.ifthenelse(self.waterBodies.distribution != 0,\
          pcr.areamaximum(surfaceWaterResidenceTime,self.waterBodies.distribution),surfaceWaterResidenceTime),\
           surfaceWaterResidenceTimeFileName)
         self.report(pcr.ifthenelse(self.waterBodies.distribution != 0,\
          pcr.areamaximum(surfaceWaterDepth,self.waterBodies.distribution),surfaceWaterDepth),\
           surfaceWaterDepthFileName)
     #-reports on standard output: values at outlet of lakes or reservoirs are assigned to their full extent
     self.report(
         pcr.ifthenelse(
             self.waterBodies.distribution != 0,
             pcr.areamaximum(self.flowVelocity,
                             self.waterBodies.distribution),
             self.flowVelocity), flowVelocityFileName)
     self.report(
         pcr.ifthenelse(
             self.waterBodies.distribution != 0,
             pcr.areamaximum(self.Q, self.waterBodies.distribution),
             self.Q), QFileName)
     self.report(pcr.ifthenelse(self.waterBodies.distribution == 0,\
      floodedFraction,0.),floodedFractionFileName)
     self.report(pcr.ifthenelse(self.waterBodies.distribution == 0,\
      floodedDepth,0.),floodedDepthFileName)
     self.report(self.actualStorage, actualStorageFileName)
     #-update date for time step and report relevant daily output
     self.currentDate = self.currentDate + datetime.timedelta(self.duration)
def main():
	#-initialization
	# MVs
	MV= -999.
	# minimum catchment size to process
	catchmentSizeLimit= 0.0
	# period of interest, start and end year
	startYear= 1961
	endYear= 2010
	# maps
	cloneMapFileName= '/data/hydroworld/PCRGLOBWB20/input30min/global/Global_CloneMap_30min.map'
	lddFileName= '/data/hydroworld/PCRGLOBWB20/input30min/routing/lddsound_30min.map'
	cellAreaFileName= '/data/hydroworld/PCRGLOBWB20/input30min/routing/cellarea30min.map'
	# set clone 
	pcr.setclone(cloneMapFileName)
	# output
	outputPath= '/scratch/rens/reservedrecharge'
	percentileMapFileName= os.path.join(outputPath,'q%03d_cumsec.map')
	textFileName= os.path.join(outputPath,'groundwater_environmentalflow_%d.txt')
	fractionReservedRechargeMapFileName= os.path.join(outputPath,'fraction_reserved_recharge%d.map')
	fractionMinimumReservedRechargeMapFileName= os.path.join(outputPath,'minimum_fraction_reserved_recharge%d.map')
	# input
	inputPath= '/nfsarchive/edwin-emergency-backup-DO-NOT-DELETE/rapid/edwin/05min_runs_results/2015_04_27/non_natural_2015_04_27/global/netcdf/'
	# define data to be read from netCDF files
	ncData= {}
	variableName= 'totalRunoff'
	ncData[variableName]= {}
	ncData[variableName]['fileName']= os.path.join(inputPath,'totalRunoff_monthTot_output.nc')
	ncData[variableName]['fileRoot']= os.path.join(outputPath,'qloc')
	ncData[variableName]['annualAverage']= pcr.scalar(0)	
	variableName= 'gwRecharge'
	ncData[variableName]= {}
	ncData[variableName]['fileName']= os.path.join(inputPath,'gwRecharge_monthTot_output.nc')
	ncData[variableName]['fileRoot']= os.path.join(outputPath,'gwrec')
	ncData[variableName]['annualAverage']= pcr.scalar(0)
	variableName= 'discharge'
	ncData[variableName]= {}
	ncData[variableName]['fileName']= os.path.join(inputPath,'totalRunoff_monthTot_output.nc')
	ncData[variableName]['fileRoot']= os.path.join(outputPath,'qc')
	ncData[variableName]['annualAverage']= pcr.scalar(0)
	ncData[variableName]['mapStack']= np.array([])
	# percents and environmental flow condition set as percentile
	percents= range(10,110,10)
	environmentalFlowPercent= 10
	if environmentalFlowPercent not in percents:
		percents.append(environmentalFlowPercent)
		percents.sort()

	#-start
	# obtain attributes
	pcr.setclone(cloneMapFileName)
	cloneSpatialAttributes= spatialAttributes(cloneMapFileName)
	years= range(startYear,endYear+1)
	# output path
	if not os.path.isdir(outputPath):
		os.makedirs(outputPath)
	os.chdir(outputPath)
	# compute catchments
	ldd= pcr.readmap(lddFileName)
	cellArea= pcr.readmap(cellAreaFileName)
	catchments= pcr.catchment(ldd,pcr.pit(ldd))
	fractionWater= pcr.scalar(0.0) # temporary!
	lakeMask= pcr.boolean(0) # temporary!
	pcr.report(catchments,os.path.join(outputPath,'catchments.map'))
	maximumCatchmentID= int(pcr.cellvalue(pcr.mapmaximum(pcr.scalar(catchments)),1)[0])
	# iterate over years
	weight= float(len(years))**-1
	for year in years:
		#-echo year
		print ' - processing year %d' % year
		#-process data
		startDate= datetime.datetime(year,1,1)
		endDate= datetime.datetime(year,12,31)
		timeSteps= endDate.toordinal()-startDate.toordinal()+1
		dynamicIncrement= 1
		for variableName in ncData.keys():
			print '   extracting %s' % variableName,
			ncFileIn= ncData[variableName]['fileName']
			#-process data
			pcrDataSet= pcrObject(variableName, ncData[variableName]['fileRoot'],\
				ncFileIn,cloneSpatialAttributes, pcrVALUESCALE= pcr.Scalar, resamplingAllowed= True,\
				dynamic= True, dynamicStart= startDate, dynamicEnd= endDate, dynamicIncrement= dynamicIncrement, ncDynamicDimension= 'time')
			pcrDataSet.initializeFileInfo()
			pcrDataSet.processFileInfo()
			for fileInfo in pcrDataSet.fileProcessInfo.values()[0]:
				tempFileName= fileInfo[1]
				variableField= pcr.readmap(tempFileName)
				variableField= pcr.ifthen(pcr.defined(ldd),pcr.cover(variableField,0))
				if variableName == 'discharge':
					dayNumber= int(os.path.splitext(tempFileName)[1].strip('.'))
					date= datetime.date(year,1,1)+datetime.timedelta(dayNumber-1)
					numberDays= calendar.monthrange(year,date.month)[1]
					variableField= pcr.max(0,pcr.catchmenttotal(variableField*cellArea,ldd)/(numberDays*24*3600))
				ncData[variableName]['annualAverage']+= weight*variableField
				if 'mapStack' in ncData[variableName].keys():
					tempArray= pcr2numpy(variableField,MV)
					mask= tempArray != MV
					if ncData[variableName]['mapStack'].size != 0:
						ncData[variableName]['mapStack']= np.vstack((ncData[variableName]['mapStack'],tempArray[mask]))
					else:
						ncData[variableName]['mapStack']= tempArray[mask]
						coordinates= np.zeros((ncData[variableName]['mapStack'].size,2))
						pcr.setglobaloption('unitcell')
						tempArray= pcr2numpy(pcr.ycoordinate(pcr.boolean(1))+0.5,MV)
						coordinates[:,0]= tempArray[mask]
						tempArray= pcr2numpy(pcr.xcoordinate(pcr.boolean(1))+0.5,MV)
						coordinates[:,1]= tempArray[mask]      
				os.remove(tempFileName)				
			# delete object
			pcrDataSet= None
			del pcrDataSet
			# close line on screen
			print
	# report annual averages
	key= 'annualAverage'
	ncData['discharge'][key]/= 12
	for variableName in ncData.keys():
		ncData[variableName][key]= pcr.max(0,ncData[variableName][key])
		pcr.report(ncData[variableName][key],\
			os.path.join(outputPath,'%s_%s.map' % (variableName,key)))
	# remove aux.xml
	for tempFileName in os.listdir(outputPath):
		if 'aux.xml' in tempFileName:
			os.remove(tempFileName)
	# sort data
	print 'sorting discharge data'
	variableName= 'discharge'
	key= 'mapStack'
	indices= np.zeros((ncData[variableName][key].shape),np.uint)
	for iCnt in xrange(ncData[variableName][key].shape[1]):
		indices[:,iCnt]= ncData[variableName][key][:,iCnt].argsort(kind= 'mergesort')
		ncData[variableName][key][:,iCnt]= ncData[variableName][key][:,iCnt][indices[:,iCnt]]
	# extract values for percentiles
	print 'returning maps'
	for percent in percents:
		percentile= 0.01*percent
		index0= min(ncData[variableName][key].shape[0]-1,int(percentile*ncData[variableName][key].shape[0]))
		index1= min(ncData[variableName][key].shape[0]-1,int(percentile*ncData[variableName][key].shape[0])+1)
		x0= float(index0)/ncData[variableName][key].shape[0]
		x1= float(index1)/ncData[variableName][key].shape[0]
		if x0 <> x1:
			y= ncData[variableName][key][index0,:]+(percentile-x0)*\
				 (ncData[variableName][key][index1,:]-ncData[variableName][key][index0,:])/(x1-x0)
		else:
			y= ncData[variableName][key][index0,:]
		# convert a slice of the stack into an array
		tempArray= np.ones((cloneSpatialAttributes.numberRows,cloneSpatialAttributes.numberCols))*MV
		for iCnt in xrange(coordinates.shape[0]):
			row= coordinates[iCnt,0]-1
			col= coordinates[iCnt,1]-1
			tempArray[row,col]= y[iCnt]
		variableField= numpy2pcr(pcr.Scalar,tempArray,MV)
		pcr.report(variableField,percentileMapFileName % percent)
		if percent == environmentalFlowPercent:
			ncData[variableName]['environmentalFlow']= variableField
		tempArray= None; variableField= None
		del tempArray, variableField
	# process environmental flow
	# initialize map of reserved recharge fraction
	fractionReservedRechargeMap= pcr.ifthen(ncData[variableName]['environmentalFlow'] < 0,pcr.scalar(0))
	fractionMinimumReservedRechargeMap= pcr.ifthen(ncData[variableName]['environmentalFlow'] < 0,pcr.scalar(0))
	textFile= open(textFileName % environmentalFlowPercent,'w')
	hStr= 'Environmental flow analysis per basin, resulting in a map of renewable, exploitable recharge, for the %d%s quantile of discharge\n' % (environmentalFlowPercent,'%')
	hStr+= 'Returns Q_%d/R, the fraction of reserved recharge needed to sustain fully the environental flow requirement defined as the %d percentile,\n' % (environmentalFlowPercent, environmentalFlowPercent)
	hStr+= 'and Q*_%d/R, a reduced fraction that takes the availability of surface water into account\n' % environmentalFlowPercent
	textFile.write(hStr)
	print hStr
	# create header to display on screen and write to file
	# reported are: 1: ID, 2: Area, 3: average discharge, 4: environmental flow, 5: average recharge,
	# 6: Q_%d/Q, 7: Q_%d/R_Avg, 8: R_Avg/Q_Avg, 9: Q*_%d/R_Avg
	hStr= '%6s,%15s,%15s,%15s,%15s,%15s,%15s,%15s,%15s\n' % \
		('ID','Area [km2]','Q_Avg [m3]','Q_%d [m3]' % environmentalFlowPercent ,'R_Avg [m3]','Q_%d/Q_Avg [-]' % environmentalFlowPercent,\
			'Q_%d/Q_Avg [-]' % environmentalFlowPercent,'R_Avg/Q_Avg [-]','Q*_%d/Q_Avg [-]' % environmentalFlowPercent)
	textFile.write(hStr)
	print hStr
	for catchment in xrange(1,maximumCatchmentID+1):
		# create catchment mask and check whether it does not coincide with a lake
		catchmentMask= catchments == catchment
		catchmentSize= pcr.cellvalue(pcr.maptotal(pcr.ifthen(catchmentMask,cellArea*1.e-6)),1)[0]
		#~ ##~ if pcr.cellvalue(pcr.maptotal(pcr.ifthen(catchmentMask,pcr.scalar(lakeMask))),1) <> \
				#~ ##~ pcr.cellvalue(pcr.maptotal(pcr.ifthen(catchmentMask,pcr.scalar(catchmentMask))),1)[0] and \
				#~ ##~ catchmentSize > catchmentSizeLimit:
		key= 'annualAverage'
		variableName= 'discharge'			
		if bool(pcr.cellvalue(pcr.maptotal(pcr.ifthen((ldd == 5) & catchmentMask,\
				pcr.scalar(ncData[variableName][key] > 0))),1)[0]) and catchmentSize >= catchmentSizeLimit:
			# valid catchment, process
			# all volumes are in m3 per year
			key= 'annualAverage'
			catchmentAverageDischarge= pcr.cellvalue(pcr.mapmaximum(pcr.ifthen(catchmentMask & (ldd == 5),\
				ncData[variableName][key])),1)[0]*365.25*3600*24
			variableName= 'gwRecharge'
			catchmentRecharge= pcr.cellvalue(pcr.maptotal(pcr.ifthen(catchmentMask,ncData[variableName][key]*\
				(1.-fractionWater)*cellArea)),1)[0]
			variableName= 'totalRunoff'
			catchmentRunoff= pcr.cellvalue(pcr.maptotal(pcr.ifthen(catchmentMask,ncData[variableName][key]*\
				cellArea)),1)[0]
			key= 'environmentalFlow'
			variableName= 'discharge'			
			catchmentEnvironmentalFlow= pcr.cellvalue(pcr.mapmaximum(pcr.ifthen(catchmentMask & (ldd == 5),\
				ncData[variableName][key])),1)[0]*365.25*3600*24
			catchmentRunoff= max(catchmentRunoff,catchmentEnvironmentalFlow)
			if catchmentAverageDischarge > 0.:
				fractionEnvironmentalFlow= catchmentEnvironmentalFlow/catchmentAverageDischarge
				fractionGroundWaterContribution= catchmentRecharge/catchmentAverageDischarge
			else:
				fractionEnvironmentalFlow= 0.
				fractionGroundWaterContribution= 0.
			if catchmentRecharge > 0:
				fractionReservedRecharge= min(1,catchmentEnvironmentalFlow/catchmentRecharge)
			else:
				fractionReservedRecharge= 1.0
			fractionMinimumReservedRecharge= (fractionReservedRecharge+fractionGroundWaterContribution-\
				fractionReservedRecharge*fractionGroundWaterContribution)*fractionReservedRecharge
			#~ # echo to screen, and write to file and map
			wStr= '%6s,%15.1f,%15.6g,%15.6g,%15.6g,%15.6f,%15.6f,%15.6f,%15.6f\n' % \
				(catchment,catchmentSize,catchmentAverageDischarge,catchmentEnvironmentalFlow,catchmentRecharge,\
					fractionEnvironmentalFlow,fractionReservedRecharge,fractionGroundWaterContribution,fractionMinimumReservedRecharge)
			print wStr
			textFile.write(wStr)
			# update maps
			fractionReservedRechargeMap= pcr.ifthenelse(catchmentMask,\
				pcr.scalar(fractionReservedRecharge),fractionReservedRechargeMap)
			fractionMinimumReservedRechargeMap= pcr.ifthenelse(catchmentMask,\
				pcr.scalar(fractionMinimumReservedRecharge),fractionMinimumReservedRechargeMap)
	#-report map and close text file
	pcr.report(fractionReservedRechargeMap,fractionReservedRechargeMapFileName % environmentalFlowPercent)
	pcr.report(fractionMinimumReservedRechargeMap,fractionMinimumReservedRechargeMapFileName % environmentalFlowPercent)
	# close text file
	textFile.close()
	# finished
	print 'all done!'
			changedOutlet= (waterBodies.outlet != 0) ^ (clippedRead.get(os.path.join(tempDir,'waterbodyoutlet_%d.map' % year)) != 0)
		targetFileName= os.path.join(pathIniTarget,'updated_outlet.map')
		pcr.report(changedOutlet,targetFileName)	
		try:
			targetFileName= os.path.join(pathIniTarget,'qavg_longterm.map')
			print targetFileName
			Q= stackAverage(pathRes,resStackList[iniOutVarStart],1,yearDays)
			print 1
                        averageQ= (1.-updateQWeight)*averageQ+updateQWeight*Q
			print 2
			#averageQ= pcr.ifthenelse(changedOutlet,averageQIni,averageQ)
			print 3
			pcr.report(averageQ,targetFileName)
			#-update wStr
			wStr+= 'total runoff [km3]: %.2e' % \
				pcr.cellvalue(pcr.maptotal(pcr.ifthen(LDD ==  5,Q*1.e-9*yearDays*timeSec)),1)[0]
		except:
   			print sys.exc_info()
			wStr+= '\n - long-term discharge has not been updated!'
	if not initializeRoutingModel:
		#-read in maps with water body parameterization for initialization and initialize water bodies for next year
		del waterBodies
		waterBodies= pcrglobWaterBodies(os.path.join(tempDir,'waterbodyid_%d.map' % year),\
			os.path.join(tempDir,'waterbodyoutlet_%d.map' % year),os.path.join(tempDir,'waterbodytype_%d.map' % year),\
			os.path.join(mapsDir,'channel_width.map'),os.path.join(pathIniSource,'qavg_longterm.map'),\
			os.path.join(pathIniSource,'qbank_longterm.map'),LDDMap,os.path.join(tempDir,'reservoirparameters_%d_30min_.tbl' % year),timeSec,clippedRead)
		fractionWater= clippedRead.get(os.path.join(tempDir,'fracwat_%d.map' % year))
		wStr+= '\n - waterbodies updated for %d' % (year+1)
	#-write log string to screen and file
	print wStr
	wStr+= '\n'
class TimeoutputTimeseries(object):
    """
  Class to create pcrcalc timeoutput style timeseries
  """
    def __init__(self, tssFilename, model, idMap=None, noHeader=False):
        """

    """

        if not isinstance(tssFilename, str):
            raise Exception(
                "timeseries output filename must be of type string")

        self._outputFilename = tssFilename
        self._maxId = 1
        self._spatialId = None
        self._spatialDatatype = None
        self._spatialIdGiven = False
        self._userModel = model
        self._writeHeader = not noHeader
        # array to store the timestep values
        self._sampleValues = None

        _idMap = False
        if isinstance(idMap, str) or isinstance(idMap,
                                                pcraster._pcraster.Field):
            _idMap = True

        nrRows = self._userModel.nrTimeSteps() - self._userModel.firstTimeStep(
        ) + 1

        if _idMap:
            self._spatialId = idMap
            if isinstance(idMap, str):
                self._spatialId = pcraster.readmap(idMap)

            _allowdDataTypes = [
                pcraster.Nominal, pcraster.Ordinal, pcraster.Boolean
            ]
            if self._spatialId.dataType() not in _allowdDataTypes:
                raise Exception(
                    "idMap must be of type Nominal, Ordinal or Boolean")

            if self._spatialId.isSpatial():
                self._maxId, valid = pcraster.cellvalue(
                    pcraster.mapmaximum(pcraster.ordinal(self._spatialId)), 1)
            else:
                self._maxId = 1

            # cell indices of the sample locations
            self._sampleAddresses = []
            for cellId in range(1, self._maxId + 1):
                self._sampleAddresses.append(self._getIndex(cellId))

            self._spatialIdGiven = True
            nrCols = self._maxId
            self._sampleValues = [[Decimal("NaN")] * nrCols
                                  for _ in [0] * nrRows]
        else:
            self._sampleValues = [[Decimal("NaN")] * 1 for _ in [0] * nrRows]

    def _getIndex(self, cellId):
        """
    returns the cell index of a sample location
    """
        nrCells = pcraster.clone().nrRows() * pcraster.clone().nrCols()
        found = False
        cell = 1
        index = 0

        while found == False:
            if pcraster.cellvalue(self._spatialId,
                                  cell)[1] == True and pcraster.cellvalue(
                                      self._spatialId, cell)[0] == cellId:
                index = cell
                found = True
            cell += 1
            if cell > nrCells:
                raise RuntimeError(
                    "could not find a cell with the index number %d" %
                    (cellId))

        return index

    def sample(self, expression):
        """
    Sampling the current values of 'expression' at the given locations for the current timestep
    """

        arrayRowPos = self._userModel.currentTimeStep(
        ) - self._userModel.firstTimeStep()

        #if isinstance(expression, float):
        #  expression = pcraster.scalar(expression)

        try:
            # store the data type for tss file header
            if self._spatialDatatype == None:
                self._spatialDatatype = str(expression.dataType())
        except AttributeError, e:
            datatype, sep, tail = str(e).partition(" ")
            msg = "Argument must be a PCRaster map, type %s given. If necessary use data conversion functions like scalar()" % (
                datatype)
            raise AttributeError(msg)

        if self._spatialIdGiven:
            if expression.dataType() == pcraster.Scalar or expression.dataType(
            ) == pcraster.Directional:
                tmp = pcraster.areaaverage(pcraster.spatial(expression),
                                           pcraster.spatial(self._spatialId))
            else:
                tmp = pcraster.areamajority(pcraster.spatial(expression),
                                            pcraster.spatial(self._spatialId))

            col = 0
            for cellIndex in self._sampleAddresses:
                value, valid = pcraster.cellvalue(tmp, cellIndex)
                if not valid:
                    value = Decimal("NaN")

                self._sampleValues[arrayRowPos][col] = value
                col += 1
        else:
            if expression.dataType() == pcraster.Scalar or expression.dataType(
            ) == pcraster.Directional:
                tmp = pcraster.maptotal(pcraster.spatial(expression))\
                      / pcraster.maptotal(pcraster.scalar(pcraster.defined(pcraster.spatial(expression))))
            else:
                tmp = pcraster.mapmaximum(pcraster.maptotal(pcraster.areamajority(pcraster.spatial(expression),\
                      pcraster.spatial(pcraster.nominal(1)))))

            value, valid = pcraster.cellvalue(tmp, 1)
            if not valid:
                value = Decimal("NaN")

            self._sampleValues[arrayRowPos] = value

        if self._userModel.currentTimeStep() == self._userModel.nrTimeSteps():
            self._writeTssFile()
Exemplo n.º 18
0
    cost_correction = pd.read_csv(os.path.join(cost_dir,
                                               'cost_correction.csv'),
                                  index_col=0,
                                  comment='#')

    #%% Test the cost calculation
    msr_name = 'sidechannel_everywhere'
    label = 'everywhere'
    msr_name = 'lowering_everywhere'
    label = 'everywhere'
    #msr_name = 'minemblowering_dummy-ID'
    #msr_name = 'groynelowering_dummy-ID'
    msr = read_measure(os.path.join(msr_map_dir, msr_name))
    printing = True
    dh = dem - msr.dem
    vtot = pcr.maptotal(dh * 25**2)
    pcr.aguila(dh)
    ### Smoothing
    c_sm = CostSmoothing('dummy', smoothing_distr)
    sm_cost, sm_std = c_sm.overview(msr)
    if printing == True:
        print(sm_cost)
        print(sm_std)

    ### Earth work
    c_ew = CostEarthwork(label, minemb_ext_use_distr, minemb_int_use_distr,
                         minemb_polluted_distr, dem, minemb, groyne,
                         pollution_zones, cost_input_ew)
    ew_cost, ew_std = c_ew.overview(msr, pollution_threshold=2)
    if printing == True:
        print(ew_cost)
	def dynamic(self):
		#####################
		# * dynamic section #
		#####################
		#-evaluation of the current date: return current month and the time step used
		#-reading in fluxes over land and water area for current time step [m/d]
		# and read in reservoir demand and surface water extraction [m3]
		try:
			self.landSurfaceQ= clippedRead.get(pcrm.generateNameT(landSurfaceQFileName,self.currentTimeStep()))
		except:
			pass
		try:
			self.potWaterSurfaceQ= clippedRead.get(pcrm.generateNameT(waterSurfaceQFileName,self.currentTimeStep()))
		except:
			pass
		#-surface water extraction and reservoir demand currently set to zero, should
		# be computed automatically and updated to reservoirs
		self.potSurfaceWaterExtraction= pcr.spatial(pcr.scalar(0.))
		#self.waterBodies.demand=  #self.reservoirDemandTSS.assignID(self.waterBodies.ID,self.currentTimeStep(),0.)*self.timeSec
		#-initialization of cumulative values of actual water extractions
		self.actWaterSurfaceQ= pcr.spatial(pcr.scalar(0.))
		self.actSurfaceWaterExtraction= pcr.spatial(pcr.scalar(0.))    
		#-definition of sub-loop for routing scheme - explicit scheme has to satisfy Courant condition
		timeLimit= pcr.cellvalue(pcr.mapminimum((pcr.cover(pcr.ifthen(self.waterBodies.distribution == 0,\
			self.channelLength/self.flowVelocity),\
				self.timeSec/self.nrIterDefault)*self.timeSec/self.nrIterDefault)**0.5),1)[0]
		nrIter= int(self.timeSec/timeLimit)
		nrIter= min(nrIter,int(self.timeSec/300.))
		while float(self.timeSec/nrIter) % 1 <> 0:
			nrIter+= 1
		deltaTime= self.timeSec/nrIter
		#-sub-loop for current time step
		if self.currentDate.day == 1 or nrIter >= 24:
			print '\n*\tprocessing %s, currently using %d substeps of %d seconds\n' % \
				(self.currentDate.date(),nrIter,deltaTime)
		#-update discharge and storage
		for nrICur in range(nrIter):
			#-initializing discharge for the current sub-timestep and fill in values
			# for channels and at outlets of waterbodies
			# * channels *
			estQ= pcr.ifthenelse((self.actualStorage > 0.) & (self.waterBodies.distribution == 0) ,\
				(self.wettedArea/self.alphaQ)**(1./self.betaQ),0.)
			#estQ= pcr.ifthenelse((self.actualStorage > 0.) & (self.waterBodies.distribution == 0) ,\
				#0.5*(self.Q+(self.wettedArea/self.alphaQ)**(1./self.betaQ)),0.)
			#estQ= pcr.min(estQ,self.actualStorage/deltaTime)
			self.report(estQ,'results/qest')
			self.Q= pcr.spatial(pcr.scalar(0.))
			self.Q= pcr.ifthenelse(self.waterBodies.distribution == 0,\
				pcr.kinematic(self.channelLDD,estQ,0.,self.alphaQ,\
					self.betaQ,1,deltaTime,self.channelLength),self.Q)
			# * water bodies *
			self.waterBodies.dischargeUpdate()
			self.Q= self.waterBodies.returnMapValue(self.Q,self.waterBodies.actualQ)
			#-fluxes and resulting change in storage: first the local fluxes are evaluated
			# and aggregated over the water bodies where applicable; this includes the specific runoff [m/day/m2]
			# from input and the estimated extraction from surface water as volume per day [m3/day];
			# specific runoff from the land surface is always positive whereas the fluxes over the water surface
			# are potential, including discharge, and are adjusted to match the availabe storage; to this end,
			# surface water storage and fluxes over water bodies are totalized and assigned to the outlet;
			# discharge is updated in a separate step, after vertical fluxes are compared to the actual storage
			deltaActualStorage= ((self.landFraction*self.landSurfaceQ+\
				self.waterFraction*self.potWaterSurfaceQ)*self.cellArea-\
				self.potSurfaceWaterExtraction)*float(self.duration)/nrIter
			deltaActualStorage= pcr.ifthenelse(self.waterBodies.distribution != 0,\
				pcr.ifthenelse(self.waterBodies.location != 0,\
					pcr.areatotal(deltaActualStorage,self.waterBodies.distribution),0),\
						deltaActualStorage)   
			adjustmentRatio= pcr.ifthenelse(deltaActualStorage < 0.,\
				pcr.min(1.,-self.actualStorage/deltaActualStorage),1.)
			self.actWaterSurfaceQ+= adjustmentRatio*self.potWaterSurfaceQ
			self.actSurfaceWaterExtraction+= adjustmentRatio*self.actSurfaceWaterExtraction
			deltaActualStorage*= adjustmentRatio
			#-local water balance check
			if testLocalWaterBalance:
				differenceActualStorage= self.actualStorage
				differenceActualStorage+= deltaActualStorage
			#-overall water balance check: net input
			self.cumulativeDeltaStorage+= pcr.catchmenttotal(deltaActualStorage,self.LDD)
			#-update storage first with local changes, then balance discharge with storage and update storage
			# with lateral flow and return value to water bodies
			self.actualStorage+= deltaActualStorage
			self.actualStorage= pcr.max(0.,self.actualStorage)
			self.Q= pcr.min(self.Q,self.actualStorage/deltaTime)
			deltaActualStorage= (-self.Q+pcr.upstream(self.LDD,self.Q))*deltaTime
			deltaActualStorage= pcr.ifthenelse(self.waterBodies.distribution != 0,\
				pcr.ifthenelse(self.waterBodies.location != 0,\
					pcr.areatotal(deltaActualStorage,self.waterBodies.distribution),0),\
						deltaActualStorage)
			self.actualStorage+= deltaActualStorage
			self.actualStorage= pcr.max(0.,self.actualStorage)
			self.waterBodies.actualStorage= self.waterBodies.retrieveMapValue(self.actualStorage)
			#-flooded fraction returned
			floodedFraction,floodedDepth,\
					self.wettedArea,self.alphaQ= self.kinAlphaComposite(self.actualStorage,self.floodplainMask)
			self.wettedArea= self.waterBodies.returnMapValue(self.wettedArea,\
				self.waterBodies.channelWidth+2.*self.waterBodies.updateWaterHeight())
			self.waterFraction= pcr.ifthenelse(self.waterBodies.distribution == 0,\
				pcr.max(self.waterFractionMask,floodedFraction),self.waterFractionMask)
			self.landFraction= pcr.max(0.,1.-self.waterFraction)
			self.flowVelocity= pcr.ifthenelse(self.wettedArea > 0,self.Q/self.wettedArea,0.)
			#-local water balance check
			if testLocalWaterBalance:
				differenceActualStorage+= deltaActualStorage
				differenceActualStorage-= self.actualStorage
				totalDifference= pcr.cellvalue(pcr.maptotal(differenceActualStorage),1)[0]
				minimumDifference= pcr.cellvalue(pcr.mapminimum(differenceActualStorage),1)[0]
				maximumDifference= pcr.cellvalue(pcr.mapmaximum(differenceActualStorage),1)[0]
				if abs(totalDifference) > 1.e-3:
					print 'water balance error: total %e; min %e; max %e' %\
						(totalDifference,minimumDifference,maximumDifference)
					if  reportLocalWaterBalance:           
						pcr.report(differenceActualStorage,'mbe_%s.map' % self.currentDate.date())
			#-overall water balance check: updating cumulative discharge and total storage [m3]
			self.totalDischarge+= self.Q*deltaTime
			self.totalStorage= pcr.catchmenttotal(self.actualStorage,self.LDD)
		#-check on occurrence of last day and report mass balance
		if self.currentDate == self.endDate:
			#-report initial maps
			pcr.report(self.Q,self.QIniMap)
			pcr.report(self.actualStorage,self.actualStorageIniMap)
			#-return relative and absolute water balance error per cell and
			# as total at basin outlets
			self.totalDischarge= pcr.ifthen((self.waterBodies.distribution == 0) | \
				(self.waterBodies.location != 0),self.totalDischarge)
			self.cumulativeDeltaStorage= pcr.ifthen((self.waterBodies.distribution == 0) | \
				(self.waterBodies.location != 0),self.cumulativeDeltaStorage)
			massBalanceError= self.totalStorage+self.totalDischarge-\
				self.cumulativeDeltaStorage
			relMassBalanceError= 1.+pcr.ifthenelse(self.cumulativeDeltaStorage <> 0.,
				massBalanceError/self.cumulativeDeltaStorage,0.)
			totalMassBalanceError= pcr.cellvalue(pcr.maptotal(pcr.ifthen(self.basinOutlet,\
				massBalanceError)),1)[0]
			totalCumulativeDeltaStorage= pcr.cellvalue(pcr.maptotal(pcr.ifthen(self.basinOutlet,\
				self.cumulativeDeltaStorage)),1)[0]
			if totalCumulativeDeltaStorage > 0:
				totalRelativeMassBalanceError= 1.+totalMassBalanceError/totalCumulativeDeltaStorage
			else:
				totalRelativeMassBalanceError= 1.
			#-report maps and echo value
			pcr.report(massBalanceError,mbeFileName)
			pcr.report(relMassBalanceError,mbrFileName)
			print '\n*\ttotal global mass balance error [m3]: %8.3g' % totalMassBalanceError
			print '\n*\trelative global mass balance error [-]: %5.3f' % totalRelativeMassBalanceError     
			#-echo to screen: total mass balance error and completion of run
			print '\trun completed'
		#-end of day: return states and fluxes
		#-get surface water attributes?
		if getSurfaceWaterAttributes:
			#-compute the following secondary variables:
			# surface water area [m2]: area given dynamic surface water fraction
			# residence time [days]: volume over discharge, assigned -1 in case discharge is zero
			# surface water depth [m], weighed by channel and floodplain volume
			surfaceWaterArea= self.waterFraction*self.cellArea
			surfaceWaterArea= pcr.ifthenelse(self.waterBodies.distribution != 0,\
					pcr.ifthenelse(self.waterBodies.location != 0,\
						pcr.areatotal(surfaceWaterArea,self.waterBodies.distribution),0),\
							surfaceWaterArea)     
			surfaceWaterResidenceTime= pcr.ifthenelse(self.Q > 0.,self.actualStorage/(self.Q*self.timeSec),-1)
			surfaceWaterDepth= pcr.ifthenelse(self.actualStorage > 0.,\
				pcr.max(0.,self.actualStorage-self.channelStorageCapacity)**2/\
					(self.actualStorage*surfaceWaterArea),0.)
			surfaceWaterDepth+= pcr.ifthenelse(self.actualStorage > 0.,\
				pcr.min(self.channelStorageCapacity,self.actualStorage)**2/(self.waterFractionMask*\
				self.cellArea*self.actualStorage),0.)
			#-reports: values at outlet of lakes or reservoirs are assigned to their full extent
			self.report(pcr.ifthenelse(self.waterBodies.distribution != 0,\
				pcr.areamaximum(surfaceWaterArea,self.waterBodies.distribution),surfaceWaterArea),\
					surfaceWaterAreaFileName)   
			self.report(pcr.ifthenelse(self.waterBodies.distribution != 0,\
				pcr.areamaximum(surfaceWaterResidenceTime,self.waterBodies.distribution),surfaceWaterResidenceTime),\
					surfaceWaterResidenceTimeFileName)
			self.report(pcr.ifthenelse(self.waterBodies.distribution != 0,\
				pcr.areamaximum(surfaceWaterDepth,self.waterBodies.distribution),surfaceWaterDepth),\
					surfaceWaterDepthFileName)
		#-reports on standard output: values at outlet of lakes or reservoirs are assigned to their full extent
		self.report(pcr.ifthenelse(self.waterBodies.distribution != 0,
			pcr.areamaximum(self.flowVelocity,self.waterBodies.distribution),self.flowVelocity),flowVelocityFileName)
		self.report(pcr.ifthenelse(self.waterBodies.distribution != 0,
			pcr.areamaximum(self.Q,self.waterBodies.distribution),self.Q),QFileName)
		self.report(pcr.ifthenelse(self.waterBodies.distribution == 0,\
			floodedFraction,0.),floodedFractionFileName)
		self.report(pcr.ifthenelse(self.waterBodies.distribution == 0,\
			floodedDepth,0.),floodedDepthFileName)
		self.report(self.actualStorage,actualStorageFileName)
		#-update date for time step and report relevant daily output 
		self.currentDate= self.currentDate+datetime.timedelta(self.duration)