def snaptomap(points, mmap): """ Snap the points in _points_ to nearest non missing values in _mmap_. Can be used to move gauge locations to the nearest rivers. Input: - points - map with points to move - mmap - map with points to move to Return: - map with shifted points """ points = pcr.cover(points, 0) # Create unique id map of mmap cells unq = pcr.nominal(pcr.cover(pcr.uniqueid(pcr.defined(mmap)), pcr.scalar(0.0))) # Now fill holes in mmap map with lues indicating the closes mmap cell. dist_cellid = pcr.scalar(pcr.spreadzone(unq, 0, 1)) # Get map with values at location in points with closes mmap cell dist_cellid = pcr.ifthenelse(points > 0, dist_cellid, 0) # Spread this out dist_fill = pcr.spreadzone(pcr.nominal(dist_cellid), 0, 1) # Find the new (moved) locations npt = pcr.uniqueid(pcr.boolean(pcr.ifthen(dist_fill == unq, unq))) # Now recreate the original value in the points maps ptcover = pcr.spreadzone(pcr.cover(points, 0), 0, 1) # Now get the org point value in the pt map nptorg = pcr.ifthen(npt > 0, ptcover) return nptorg
def subcatch_order_a(ldd, oorder): """ Determines subcatchments using the catchment order This version uses the last cell BELOW order to derive the catchments. In general you want the _b version Input: - ldd - order - order to use Output: - map with catchment for the given streamorder """ outl = find_outlet(ldd) large = pcr.subcatchment(ldd, pcr.boolean(outl)) stt = pcr.streamorder(ldd) sttd = pcr.downstream(ldd, stt) pts = pcr.ifthen((pcr.scalar(sttd) - pcr.scalar(stt)) > 0.0, sttd) dif = pcr.upstream( ldd, pcr.cover( pcr.ifthen( large, pcr.uniqueid(pcr.boolean(pcr.ifthen(stt == pcr.ordinal(oorder), pts))), ), 0, ), ) dif = pcr.cover(pcr.scalar(outl), dif) # Add catchment outlet dif = pcr.ordinal(pcr.uniqueid(pcr.boolean(dif))) sc = pcr.subcatchment(ldd, dif) return sc, dif, stt
def subcatch_stream(ldd, stream, threshold): """ Derive catchments based upon strahler threshold Input: ldd -- pcraster object direction, local drain directions stream -- pcraster object direction, streamorder threshold -- integer, strahler threshold, subcatchments ge threshold are derived output: stream_ge -- pcraster object, streams of strahler order ge threshold subcatch -- pcraster object, subcatchments of strahler order ge threshold """ # derive stream order # stream = pcr.streamorder(ldd) stream_ge = pcr.ifthen(stream >= threshold, stream) stream_up_sum = pcr.ordinal( pcr.upstream(ldd, pcr.cover(pcr.scalar(stream_ge), 0))) # detect any transfer of strahler order, to a higher strahler order. transition_strahler = pcr.ifthenelse( pcr.downstream(ldd, stream_ge) != stream_ge, pcr.boolean(1), pcr.ifthenelse( pcr.nominal(ldd) == 5, pcr.boolean(1), pcr.ifthenelse( pcr.downstream(ldd, pcr.scalar(stream_up_sum)) > pcr.scalar(stream_ge), pcr.boolean(1), pcr.boolean(0)))) # make unique ids (write to file) transition_unique = pcr.ordinal(pcr.uniqueid(transition_strahler)) # derive upstream catchment areas (write to file) subcatch = pcr.nominal(pcr.subcatchment(ldd, transition_unique)) return stream_ge, subcatch
def subcatch_stream(ldd, stream, threshold): """ Derive catchments based upon strahler threshold Input: ldd -- pcraster object direction, local drain directions stream -- pcraster object direction, streamorder threshold -- integer, strahler threshold, subcatchments ge threshold are derived output: stream_ge -- pcraster object, streams of strahler order ge threshold subcatch -- pcraster object, subcatchments of strahler order ge threshold """ # derive stream order # stream = pcr.streamorder(ldd) stream_ge = pcr.ifthen(stream >= threshold, stream) stream_up_sum = pcr.ordinal(pcr.upstream(ldd, pcr.cover(pcr.scalar(stream_ge), 0))) # detect any transfer of strahler order, to a higher strahler order. transition_strahler = pcr.ifthenelse(pcr.downstream(ldd, stream_ge) != stream_ge, pcr.boolean(1), pcr.ifthenelse(pcr.nominal(ldd) == 5, pcr.boolean(1), pcr.ifthenelse(pcr.downstream(ldd, pcr.scalar(stream_up_sum)) > pcr.scalar(stream_ge), pcr.boolean(1), pcr.boolean(0)))) # make unique ids (write to file) transition_unique = pcr.ordinal(pcr.uniqueid(transition_strahler)) # derive upstream catchment areas (write to file) subcatch = pcr.nominal(pcr.subcatchment(ldd, transition_unique)) return stream_ge, subcatch
def spatialInterpolation2PCR(fieldArray, pcrType, MV): #-interpolates the field array to the full extent field = pcr.numpy2pcr(pcrType, fieldArray, MV) cellID = pcr.nominal(pcr.uniqueid(pcr.defined(field))) zoneID = pcr.spreadzone(cellID, 0, 1) if pcrType == pcr.Scalar: field = pcr.areaaverage(field, zoneID) else: field = pcr.areamajority(field, zoneID) return field
def interpolategauges(inputmap, method): """" Interpolate time series gauge data onto a grid using different methods inputmap: map with points data for a single timestep method: string indicating the method inv pol input: inputmap, method returns: interpolated map """ if method == "inv": result = pcr.inversedistance(1, inputmap, 3, 0, 0) elif method == "pol": Unq = pcr.uniqueid(pcr.boolean(inputmap + 1)) result = pcr.spreadzone(pcr.ordinal(pcr.cover(Unq, 0)), 0, 1) result = pcr.areaaverage(inputmap, result) else: Unq = pcr.uniqueid(pcr.boolean(inputmap + 1)) result = pcr.spreadzone(pcr.ordinal(pcr.cover(Unq, 0)), 0, 1) result = pcr.areaaverage(inputmap, result) return result
def pt_flow_in_river(ldd, river): """ Returns all points (True) that flow into the mak river (boolean map with river set to True) :param ldd: Drainage network :param river: Map of river (True River, False non-river) :return ifmap: map with infrlo points into the river (True) :return ctach: catchment of each of the inflow points """ dspts = pcr.downstream(ldd, pcr.cover(river, 0)) dspts = pcr.ifthenelse(pcr.cover(river, 0) == 1, 0, dspts) catch = pcr.subcatchment(ldd, pcr.nominal(pcr.uniqueid(dspts))) return dspts, catch
def premcloop(self): self.clone = pcr.boolean(cfg.cloneString) self.dem = pcr.scalar(cfg.dem) self.createInstancesPremcloop() # required for reporting as numpy self.locations = pcr.cover(pcr.nominal(cfg.locations), 0) pcr.report(self.locations, 'locats') self.forestNoForest = pcr.boolean(cfg.forestNoForest) idMap = pcr.uniqueid(self.clone) oneLocationPerArea = pcr.areamaximum(idMap, self.forestNoForest) == idMap self.locationsForParameters = pcr.cover( pcr.nominal( pcr.scalar(pcr.ifthen(oneLocationPerArea, self.forestNoForest)) + 1), 0)
def subcatch_order_b( ldd, oorder, sizelimit=0, fill=False, fillcomplete=False, stoporder=0 ): """ Determines subcatchments using the catchment order This version tries to keep the number op upstream/downstream catchment the small by first dederivingatchment connected to the major river(the order) given, and fill up from there. Input: - ldd - oorder - order to use - sizelimit - smallest catchments to include, default is all (sizelimit=0) in number of cells - if fill is set to True the higer order catchment are filled also - if fillcomplete is set to True the whole ldd is filled with catchments. :returns sc, dif, nldd; Subcatchment, Points, subcatchldd """ # outl = find_outlet(ldd) # large = pcr.subcatchment(ldd,pcr.boolean(outl)) if stoporder == 0: stoporder = oorder stt = pcr.streamorder(ldd) sttd = pcr.downstream(ldd, stt) pts = pcr.ifthen((pcr.scalar(sttd) - pcr.scalar(stt)) > 0.0, sttd) maxorder = pcraster.framework.getCellValue(pcr.mapmaximum(stt), 1, 1) dif = pcr.uniqueid(pcr.boolean(pcr.ifthen(stt == pcr.ordinal(oorder), pts))) if fill: for order in range(oorder, maxorder): m_pts = pcr.ifthen((pcr.scalar(sttd) - pcr.scalar(order)) > 0.0, sttd) m_dif = pcr.uniqueid( pcr.boolean(pcr.ifthen(stt == pcr.ordinal(order), m_pts)) ) dif = pcr.uniqueid(pcr.boolean(pcr.cover(m_dif, dif))) for myorder in range(oorder - 1, stoporder, -1): sc = pcr.subcatchment(ldd, pcr.nominal(dif)) m_pts = pcr.ifthen((pcr.scalar(sttd) - pcr.scalar(stt)) > 0.0, sttd) m_dif = pcr.uniqueid( pcr.boolean(pcr.ifthen(stt == pcr.ordinal(myorder - 1), m_pts)) ) dif = pcr.uniqueid( pcr.boolean(pcr.cover(pcr.ifthen(pcr.scalar(sc) == 0, m_dif), dif)) ) if fillcomplete: sc = pcr.subcatchment(ldd, pcr.nominal(dif)) cs, m_dif, stt = subcatch_order_a(ldd, stoporder) dif = pcr.uniqueid( pcr.boolean( pcr.cover( pcr.ifthen(pcr.scalar(sc) == 0, pcr.ordinal(m_dif)), pcr.ordinal(dif), ) ) ) scsize = pcr.catchmenttotal(1, ldd) dif = pcr.ordinal(pcr.uniqueid(pcr.boolean(pcr.ifthen(scsize >= sizelimit, dif)))) sc = pcr.subcatchment(ldd, dif) # Make pit ldd nldd = pcr.lddrepair(pcr.ifthenelse(pcr.cover(dif, 0) > 0, 5, ldd)) return sc, dif, nldd
linescover = pcr.ifthen(lines==1,pcr.scalar(0)) pointscover = pcr.ifthen(pcr.scalar(points)==1,pcr.scalar(0)) #pcr.report(linescover,'lines.map') #pcr.report(pointscover,'points.map') dem = pcr.cover(dem,linescover,pointscover) #pcr.report(dem,'dem1.map') dem = dem + burn #pcr.report(dem,'dem2.map') ldd = pcr.lddcreate(dem,float("1E35"),float("1E35"),float("1E35"),float("1E35")) else: ldd = pcr.lddcreate(dem,burnvalue/2,float("1E35"),float("1E35"),float("1E35")) streamorder = pcr.ordinal(pcr.streamorder(ldd)) river = pcr.boolean(pcr.ifthen(streamorder >= int(min(np.max(pcr.pcr2numpy(streamorder,-9999)),minorder)), streamorder)) outlets = pcr.ifthen(pcr.ordinal(ldd) == 5, pcr.boolean(1)) outlets = pcr.nominal(pcr.uniqueid(outlets)) catchments = pcr.nominal(pcr.catchment(ldd, outlets)) if not keepall: catchments = pcr.nominal(pcr.ifthen(pcr.mapmaximum(pcr.areatotal(pcr.scalar(catchments)*0+1,pcr.nominal(catchments))) == pcr.areatotal(pcr.scalar(catchments)*0+1,pcr.nominal(catchments)),catchments)) pcr.report(ldd,ldd_map) pcr.report(streamorder,streamorder_map) pcr.report(river,river_map) pcr.report(catchments,catchments_map) if not EPSG == None: call(('gdal_translate','-of','GTiff','-stats','-a_srs',EPSG,'-ot','Float32',catchments_map,catchments_tif)) else: call(('gdal_translate','-of','GTiff','-stats','-ot','Float32',catchments_map,catchments_tif)) wt.Raster2Pol(catchments_tif,catchshp,srs) riversid_map = workdir + 'riverid.map'
ldd = fillMVBoundingBox(ldd, 1, 58, 62, 51, 60) ldd = fillMVBoundingBox(ldd, 1, -108, -101, 31, 40) ldd = pcr.lddrepair(pcr.ldd(ldd)) pits = pcr.pit(ldd) pcr.setglobaloption('unitcell') continentMasks = pcr.cover(mask48, pcr.windowmajority(mask48,5)) #- adjust area masks with 5 min ldd continentMasksNew = pcr.ifthen(pcr.boolean(pcr.readmap(cloneMap)) == 0, pcr.scalar(1)) for i in areas[0:]: print 'area mask = ', i mask = pcr.ifthen(continentMasks == i, pcr.boolean(1)) pitsContinent = pcr.pcrand(mask, pcr.boolean(pits)) pitsContinent = pcr.nominal(pcr.uniqueid(pcr.ifthen(pitsContinent == 1, pcr.boolean(1)))) catchments = pcr.catchment(ldd, pitsContinent) newMask = pcr.ifthen(pcr.boolean(catchments) == 1, pcr.scalar(i)) continentMasksNew = pcr.cover(continentMasksNew, newMask) updateCatchments = selectCatchments(ldd, pits, pitsDict, areas, cloneMap) outMask = pcr.cover(updateCatchments, continentMasksNew) pcr.report(pcr.nominal(outMask), 'mask5min.map') pcr.report(ldd, 'ldd5min.map') #- create clone, ldd, and mask map for each area. outMask = pcr.readmap('mask5min.map') ldd = pcr.readmap('ldd5min.map') ldd = pcr.lddrepair(pcr.ldd(pcr.ifthen(pcr.boolean(outMask) == 1, pcr.scalar(ldd)))) clone = pcr.cover(pcr.boolean(outMask), pcr.boolean(1)) pcr.report(clone, 'globalClone5min.map')
basin_map = pcr.cover(basin_map, pcr.windowmajority(basin_map, 0.5)) basin_map = pcr.cover(basin_map, pcr.windowmajority(basin_map, 0.5)) basin_map = pcr.cover(basin_map, pcr.windowmajority(basin_map, 1.0)) basin_map = pcr.cover(basin_map, pcr.windowmajority(basin_map, 1.5)) basin_map = pcr.ifthen(landmask, basin_map) #~ pcr.aguila(basin_map) msg = "Redefining the basin map (so that it is consistent with the ldd map used in PCR-GLOBWB):" logger.info(msg) # - calculate the upstream area of every pixel: upstream_area = pcr.catchmenttotal(cell_area, ldd) # - calculate the catchment area of every basin: upstream_area_maximum = pcr.areamaximum(upstream_area, basin_map) # - identify the outlet of every basin (in order to rederive the basin so that it is consistent with the ldd) outlet = pcr.nominal( pcr.uniqueid( pcr.ifthen(upstream_area == upstream_area_maximum, pcr.boolean(1.0)))) # - ignoring outlets with small upstream areas threshold = 50. * 1000. * 1000. # unit: m2 outlet = pcr.ifthen(upstream_area_maximum > threshold, outlet) #~ pcr.aguila(outlet) outlet = pcr.cover(outlet, pcr.nominal(0.0)) # - recalculate the basin basin_map = pcr.nominal(pcr.subcatchment(ldd, outlet)) basin_map = pcr.clump(basin_map) basin_map = pcr.ifthen(landmask, basin_map) pcr.report(basin_map, "basin_map.map") #~ pcr.aguila(basin_map) # - calculate the basin area basin_area = pcr.areatotal(cell_area, basin_map) pcr.report(basin_area, "basin_area.map") #~ pcr.aguila(basin_area)
def main( source, destination, inifile, dem_in, rivshp, catchshp, gaugeshp=None, landuse=None, soil=None, lai=None, other_maps=None, logfilename="wtools_static_maps.log", verbose=True, clean=True, alltouch=False, outlets=([], []), ): # parse other maps into an array if not other_maps == None: if type(other_maps) == str: print other_maps other_maps = (other_maps.replace(" ", "").replace("[", "").replace( "]", "").split(",")) source = os.path.abspath(source) clone_map = os.path.join(source, "mask.map") clone_shp = os.path.join(source, "mask.shp") clone_prj = os.path.join(source, "mask.prj") if None in (rivshp, catchshp, dem_in): msg = """The following files are compulsory: - DEM (raster) - river (shape) - catchment (shape) """ print(msg) parser.print_help() sys.exit(1) if (inifile is not None) and (not os.path.exists(inifile)): print "path to ini file cannot be found" sys.exit(1) if not os.path.exists(rivshp): print "path to river shape cannot be found" sys.exit(1) if not os.path.exists(catchshp): print "path to catchment shape cannot be found" sys.exit(1) if not os.path.exists(dem_in): print "path to DEM cannot be found" sys.exit(1) # open a logger, dependent on verbose print to screen or not logger, ch = wt.setlogger(logfilename, "WTOOLS", verbose) # create directories # TODO: check if workdir is still necessary, try to # keep in memory as much as possible # delete old files (when the source and destination folder are different) if np.logical_and(os.path.isdir(destination), destination is not source): shutil.rmtree(destination) if destination is not source: os.makedirs(destination) # Read mask if not (os.path.exists(clone_map)): logger.error( "Clone file {:s} not found. Please run create_grid first.".format( clone_map)) sys.exit(1) else: # set clone pcr.setclone(clone_map) # get the extent from clone.tif xax, yax, clone, fill_value = wt.gdal_readmap(clone_map, "GTiff") trans = wt.get_geotransform(clone_map) extent = wt.get_extent(clone_map) xmin, ymin, xmax, ymax = extent zeros = np.zeros(clone.shape) ones = pcr.numpy2pcr(pcr.Scalar, np.ones(clone.shape), -9999) # get the projection from clone.tif srs = wt.get_projection(clone_map) unit_clone = srs.GetAttrValue("UNIT").lower() # READ CONFIG FILE # open config-file if inifile is None: config = ConfigParser.SafeConfigParser() config.optionxform = str else: config = wt.OpenConf(inifile) # read settings snapgaugestoriver = wt.configget(config, "settings", "snapgaugestoriver", True, datatype="boolean") burnalltouching = wt.configget(config, "settings", "burncatchalltouching", True, datatype="boolean") burninorder = wt.configget(config, "settings", "burncatchalltouching", False, datatype="boolean") verticetollerance = wt.configget(config, "settings", "vertice_tollerance", 0.0001, datatype="float") """ read parameters """ burn_outlets = wt.configget(config, "parameters", "burn_outlets", 10000, datatype="int") burn_rivers = wt.configget(config, "parameters", "burn_rivers", 200, datatype="int") burn_connections = wt.configget(config, "parameters", "burn_connections", 100, datatype="int") burn_gauges = wt.configget(config, "parameters", "burn_gauges", 100, datatype="int") minorder = wt.configget(config, "parameters", "riverorder_min", 3, datatype="int") try: percentiles = np.array( config.get("parameters", "statisticmaps", "0, 100").replace(" ", "").split(","), dtype="float", ) except ConfigParser.NoOptionError: percentiles = [0.0, 100.0] # read the parameters for generating a temporary very high resolution grid if unit_clone == "degree": cellsize_hr = wt.configget(config, "parameters", "highres_degree", 0.0005, datatype="float") elif (unit_clone == "metre") or (unit_clone == "meter"): cellsize_hr = wt.configget(config, "parameters", "highres_metre", 50, datatype="float") cols_hr = int((float(xmax) - float(xmin)) / cellsize_hr + 2) rows_hr = int((float(ymax) - float(ymin)) / cellsize_hr + 2) hr_trans = (float(xmin), cellsize_hr, float(0), float(ymax), 0, -cellsize_hr) clone_hr = os.path.join(destination, "clone_highres.tif") # make a highres clone as well! wt.CreateTif(clone_hr, rows_hr, cols_hr, hr_trans, srs, 0) # read staticmap locations catchment_map = wt.configget(config, "staticmaps", "catchment", "wflow_catchment.map") dem_map = wt.configget(config, "staticmaps", "dem", "wflow_dem.map") demmax_map = wt.configget(config, "staticmaps", "demmax", "wflow_demmax.map") demmin_map = wt.configget(config, "staticmaps", "demmin", "wflow_demmin.map") gauges_map = wt.configget(config, "staticmaps", "gauges", "wflow_gauges.map") landuse_map = wt.configget(config, "staticmaps", "landuse", "wflow_landuse.map") ldd_map = wt.configget(config, "staticmaps", "ldd", "wflow_ldd.map") river_map = wt.configget(config, "staticmaps", "river", "wflow_river.map") outlet_map = wt.configget(config, "staticmaps", "outlet", "wflow_outlet.map") riverlength_fact_map = wt.configget(config, "staticmaps", "riverlength_fact", "wflow_riverlength_fact.map") soil_map = wt.configget(config, "staticmaps", "soil", "wflow_soil.map") streamorder_map = wt.configget(config, "staticmaps", "streamorder", "wflow_streamorder.map") subcatch_map = wt.configget(config, "staticmaps", "subcatch", "wflow_subcatch.map") # read mask location (optional) masklayer = wt.configget(config, "mask", "masklayer", catchshp) # ???? empty = pcr.ifthen(ones == 0, pcr.scalar(0)) # TODO: check if extents are correct this way # TODO: check what the role of missing values is in zeros and ones (l. 123 # in old code) # first add a missing value to dem_in ds = gdal.Open(dem_in, gdal.GA_Update) RasterBand = ds.GetRasterBand(1) fill_val = RasterBand.GetNoDataValue() if fill_val is None: RasterBand.SetNoDataValue(-9999) ds = None # reproject to clone map: see http://stackoverflow.com/questions/10454316/how-to-project-and-resample-a-grid-to-match-another-grid-with-gdal-python # resample DEM logger.info("Resampling dem from {:s} to {:s}".format( os.path.abspath(dem_in), os.path.join(destination, dem_map))) wt.gdal_warp( dem_in, clone_map, os.path.join(destination, dem_map), format="PCRaster", gdal_interp=gdalconst.GRA_Average, ) # retrieve amount of rows and columns from clone # TODO: make windowstats applicable to source/target with different projections. This does not work yet. # retrieve srs from DEM try: srs_dem = wt.get_projection(dem_in) except: logger.warning( "No projection found in DEM, assuming WGS 1984 lat long") srs_dem = osr.SpatialReference() srs_dem.ImportFromEPSG(4326) clone2dem_transform = osr.CoordinateTransformation(srs, srs_dem) # if srs.ExportToProj4() == srs_dem.ExportToProj4(): wt.windowstats( dem_in, len(yax), len(xax), trans, srs, destination, percentiles, transform=clone2dem_transform, logger=logger, ) ## read catchment shape-file to create catchment map src = rasterio.open(clone_map) shapefile = fiona.open(catchshp, "r") catchment_shapes = [feature["geometry"] for feature in shapefile] image = features.rasterize(catchment_shapes, out_shape=src.shape, all_touched=True, transform=src.transform) catchment_domain = pcr.numpy2pcr(pcr.Ordinal, image.copy(), 0) ## read river shape-file and create burn layer shapefile = fiona.open(rivshp, "r") river_shapes = [feature["geometry"] for feature in shapefile] image = features.rasterize(river_shapes, out_shape=src.shape, all_touched=False, transform=src.transform) rivers = pcr.numpy2pcr(pcr.Nominal, image.copy(), 0) riverdem = pcr.scalar(rivers) * pcr.readmap( os.path.join(destination, dem_map)) pcr.setglobaloption("lddin") riverldd = pcr.lddcreate(riverdem, 1e35, 1e35, 1e35, 1e35) riveroutlet = pcr.cover( pcr.ifthen(pcr.scalar(riverldd) == 5, pcr.scalar(1000)), 0) burn_layer = pcr.cover( (pcr.scalar( pcr.ifthen( pcr.streamorder(riverldd) > 1, pcr.streamorder(riverldd))) - 1) * 1000 + riveroutlet, 0, ) outlets_x, outlets_y = outlets n_outlets = len(outlets_x) logger.info("Number of outlets: {}".format(n_outlets)) if n_outlets >= 1: outlets_map_numbered = tr.points_to_map(pcr.scalar(0), outlets_x, outlets_y, 0.5) outlets_map = pcr.boolean(outlets_map_numbered) # snap outlets to closest river (max 1 cell closer to river) outlets_map = pcr.boolean( pcr.cover(tr.snaptomap(pcr.ordinal(outlets_map), rivers), 0)) ## create ldd per catchment logger.info("Calculating ldd") ldddem = pcr.scalar(clone_map) # per subcatchment, burn dem, then create modified dem that fits the ldd of the subcatchment # this ldd dem is merged over catchments, to create a global ldd that abides to the subcatchment boundaries for idx, shape in enumerate(catchment_shapes): logger.info("Computing ldd for catchment " + str(idx + 1) + "/" + str(len(catchment_shapes))) image = features.rasterize([shape], out_shape=src.shape, all_touched=True, transform=src.transform) catchment = pcr.numpy2pcr(pcr.Scalar, image.copy(), 0) dem_burned_catchment = ( pcr.readmap(os.path.join(destination, dem_map)) * pcr.scalar(catchment_domain) * catchment) - burn_layer # ldddem_catchment = pcr.lddcreatedem( # dem_burned_catchment, 1e35, 1e35, 1e35, 1e35) ldddem = pcr.cover(ldddem, dem_burned_catchment) pcr.report(ldddem, os.path.join(destination, "ldddem.map")) wflow_ldd = pcr.lddcreate(ldddem, 1e35, 1e35, 1e35, 1e35) if n_outlets >= 1: # set outlets to pit wflow_ldd = pcr.ifthenelse(outlets_map, pcr.ldd(5), wflow_ldd) wflow_ldd = pcr.lddrepair(wflow_ldd) pcr.report(wflow_ldd, os.path.join(destination, "wflow_ldd.map")) # compute stream order, identify river cells streamorder = pcr.ordinal(pcr.streamorder(wflow_ldd)) river = pcr.ifthen(streamorder >= pcr.ordinal(minorder), pcr.boolean(1)) # find the minimum value in the DEM and cover missing values with a river with this value. Effect is none!! so now left out! # mindem = int(np.min(pcr.pcr2numpy(pcr.ordinal(os.path.join(destination, dem_map)),9999999))) # dem_resample_map = pcr.cover(os.path.join(destination, dem_map), pcr.scalar(river)*0+mindem) # pcr.report(dem_resample_map, os.path.join(destination, dem_map)) pcr.report(streamorder, os.path.join(destination, streamorder_map)) pcr.report(river, os.path.join(destination, river_map)) # deal with your catchments if gaugeshp == None: logger.info("No gauges defined, using outlets instead") gauges = pcr.ordinal( pcr.uniqueid( pcr.boolean( pcr.ifthen(pcr.scalar(wflow_ldd) == 5, pcr.boolean(1))))) pcr.report(gauges, os.path.join(destination, gauges_map)) # TODO: Add the gauge shape code from StaticMaps.py (line 454-489) # TODO: add river length map (see SticMaps.py, line 492-499) # since the products here (river length fraction) are not yet used # this is disabled for now, as it also takes a lot of computation time if False: # report river length # make a high resolution empty map dem_hr_file = os.path.join(destination, "dem_highres.tif") burn_hr_file = os.path.join(destination, "burn_highres.tif") demburn_hr_file = os.path.join(destination, "demburn_highres.map") riv_hr_file = os.path.join(destination, "riv_highres.map") wt.gdal_warp(dem_in, clone_hr, dem_hr_file) # wt.CreateTif(riv_hr, rows_hr, cols_hr, hr_trans, srs, 0) # open the shape layer ds = ogr.Open(rivshp) lyr = ds.GetLayer(0) wt.ogr_burn( lyr, clone_hr, -100, file_out=burn_hr_file, format="GTiff", gdal_type=gdal.GDT_Float32, fill_value=0, ) # read dem and burn values and add xax_hr, yax_hr, burn_hr, fill = wt.gdal_readmap(burn_hr_file, "GTiff") burn_hr[burn_hr == fill] = 0 xax_hr, yax_hr, dem_hr, fill = wt.gdal_readmap(dem_hr_file, "GTiff") dem_hr[dem_hr == fill] = np.nan demburn_hr = dem_hr + burn_hr demburn_hr[np.isnan(demburn_hr)] = -9999 wt.gdal_writemap(demburn_hr_file, "PCRaster", xax_hr, yax_hr, demburn_hr, -9999.) pcr.setclone(demburn_hr_file) demburn_hr = pcr.readmap(demburn_hr_file) logger.info("Calculating ldd to determine river length") ldd_hr = pcr.lddcreate(demburn_hr, 1e35, 1e35, 1e35, 1e35) pcr.report(ldd_hr, os.path.join(destination, "ldd_hr.map")) pcr.setglobaloption("unitcell") riv_hr = pcr.scalar( pcr.streamorder(ldd_hr) >= minorder) * pcr.downstreamdist(ldd_hr) pcr.report(riv_hr, riv_hr_file) pcr.setglobaloption("unittrue") pcr.setclone(clone_map) logger.info("Computing river length") wt.windowstats( riv_hr_file, len(yax), len(xax), trans, srs, destination, stat="fact", transform=False, logger=logger, ) # TODO: nothing happens with the river lengths yet. Need to decide how to use these # report outlet map pcr.report( pcr.ifthen(pcr.ordinal(wflow_ldd) == 5, pcr.ordinal(1)), os.path.join(destination, outlet_map), ) # report subcatchment map subcatchment = pcr.subcatchment(wflow_ldd, gauges) pcr.report(pcr.ordinal(subcatchment), os.path.join(destination, subcatch_map)) # Report land use map if landuse == None: logger.info( "No land use map used. Preparing {:s} with only ones.".format( os.path.join(destination, landuse_map))) pcr.report(pcr.nominal(ones), os.path.join(destination, landuse_map)) else: logger.info("Resampling land use from {:s} to {:s}".format( os.path.abspath(landuse), os.path.join(destination, os.path.abspath(landuse_map)), )) wt.gdal_warp( landuse, clone_map, os.path.join(destination, landuse_map), format="PCRaster", gdal_interp=gdalconst.GRA_Mode, gdal_type=gdalconst.GDT_Int32, ) # report soil map if soil == None: logger.info("No soil map used. Preparing {:s} with only ones.".format( os.path.join(destination, soil_map))) pcr.report(pcr.nominal(ones), os.path.join(destination, soil_map)) else: logger.info("Resampling soil from {:s} to {:s}".format( os.path.abspath(soil), os.path.join(destination, os.path.abspath(soil_map)), )) wt.gdal_warp( soil, clone_map, os.path.join(destination, soil_map), format="PCRaster", gdal_interp=gdalconst.GRA_Mode, gdal_type=gdalconst.GDT_Int32, ) if lai == None: logger.info( "No vegetation LAI maps used. Preparing default maps {:s} with only ones." .format(os.path.join(destination, soil_map))) pcr.report(pcr.nominal(ones), os.path.join(destination, soil_map)) else: dest_lai = os.path.join(destination, "clim") os.makedirs(dest_lai) for month in range(12): lai_in = os.path.join(lai, "LAI00000.{:03d}".format(month + 1)) lai_out = os.path.join(dest_lai, "LAI00000.{:03d}".format(month + 1)) logger.info("Resampling vegetation LAI from {:s} to {:s}".format( os.path.abspath(lai_in), os.path.abspath(lai_out))) wt.gdal_warp( lai_in, clone_map, lai_out, format="PCRaster", gdal_interp=gdalconst.GRA_Bilinear, gdal_type=gdalconst.GDT_Float32, ) # report soil map if other_maps == None: logger.info("No other maps used. Skipping other maps.") else: logger.info("Resampling list of other maps...") for map_file in other_maps: map_name = os.path.split(map_file)[1] logger.info("Resampling a map from {:s} to {:s}".format( os.path.abspath(map_file), os.path.join( destination, os.path.splitext(os.path.basename(map_file))[0] + ".map", ), )) wt.gdal_warp( map_file, clone_map, os.path.join( destination, os.path.splitext(os.path.basename(map_file))[0] + ".map", ), format="PCRaster", gdal_interp=gdalconst.GRA_Mode, gdal_type=gdalconst.GDT_Float32, ) if clean: wt.DeleteList(glob.glob(os.path.join(destination, "*.xml")), logger=logger) wt.DeleteList(glob.glob(os.path.join(destination, "clim", "*.xml")), logger=logger) wt.DeleteList(glob.glob(os.path.join(destination, "*highres*")), logger=logger)
def subcatch_stream(ldd, threshold, stream=None, min_strahler=-999, max_strahler=999, assign_edge=False, assign_existing=False, up_area=None, basin=None): """ Derive catchments based upon strahler threshold Input: ldd -- pcraster object direction, local drain directions threshold -- integer, strahler threshold, subcatchments ge threshold are derived stream=None -- pcraster object ordinal, stream order map (made with pcr.streamorder), if provided, stream order map is not generated on the fly but used from this map. Useful when a subdomain within a catchment is provided, which would cause edge effects in the stream order map min_strahler=-999 -- integer, minimum strahler threshold of river catchments to return max_strahler=999 -- integer, maximum strahler threshold of river catchments to return assign_unique=False -- if set to True, unassigned connected areas at the edges of the domain are assigned a unique id as well. If set to False, edges are not assigned assign_existing=False == if set to True, unassigned edges are assigned to existing basins with an upstream weighting. If set to False, edges are assigned to unique IDs, or not assigned output: stream_ge -- pcraster object, streams of strahler order ge threshold subcatch -- pcraster object, subcatchments of strahler order ge threshold """ # derive stream order if stream is None: stream = pcr.streamorder(ldd) stream_ge = pcr.ifthen(stream >= threshold, stream) stream_up_sum = pcr.ordinal(pcr.upstream(ldd, pcr.cover(pcr.scalar(stream_ge), 0))) # detect any transfer of strahler order, to a higher strahler order. transition_strahler = pcr.ifthenelse(pcr.downstream(ldd, stream_ge) != stream_ge, pcr.boolean(1), pcr.ifthenelse(pcr.nominal(ldd) == 5, pcr.boolean(1), pcr.ifthenelse(pcr.downstream(ldd, pcr.scalar(stream_up_sum)) > pcr.scalar(stream_ge), pcr.boolean(1), pcr.boolean(0)))) # make unique ids (write to file) transition_unique = pcr.ordinal(pcr.uniqueid(transition_strahler)) # derive upstream catchment areas (write to file) subcatch = pcr.nominal(pcr.subcatchment(ldd, transition_unique)) # mask out areas outside basin if basin is not None: subcatch = pcr.ifthen(basin, subcatch) if assign_edge: # fill unclassified areas (in pcraster equal to zero) with a unique id, above the maximum id assigned so far unique_edge = pcr.clump(pcr.ifthen(subcatch==0, pcr.ordinal(0))) subcatch = pcr.ifthenelse(subcatch==0, pcr.nominal(pcr.mapmaximum(pcr.scalar(subcatch)) + pcr.scalar(unique_edge)), pcr.nominal(subcatch)) elif assign_existing: # unaccounted areas are added to largest nearest draining basin if up_area is None: up_area = pcr.ifthen(pcr.boolean(pcr.cover(stream_ge, 0)), pcr.accuflux(ldd, 1)) riverid = pcr.ifthen(pcr.boolean(pcr.cover(stream_ge, 0)), subcatch) friction = 1./pcr.scalar(pcr.spreadzone(pcr.cover(pcr.ordinal(up_area), 0), 0, 0)) # *(pcr.scalar(ldd)*0+1) delta = pcr.ifthen(pcr.scalar(ldd)>=0, pcr.ifthen(pcr.cover(subcatch, 0)==0, pcr.spreadzone(pcr.cover(riverid, 0), 0, friction))) subcatch = pcr.ifthenelse(pcr.boolean(pcr.cover(subcatch, 0)), subcatch, delta) # finally, only keep basins with minimum and maximum river order flowing through them strahler_subcatch = pcr.areamaximum(stream, subcatch) subcatch = pcr.ifthen(pcr.ordinal(strahler_subcatch) >= min_strahler, pcr.ifthen(pcr.ordinal(strahler_subcatch) <= max_strahler, subcatch)) return stream_ge, pcr.ordinal(subcatch)
def __init__(self, input_netcdf,\ output_netcdf,\ modelTime,\ tmpDir = "/dev/shm/"): DynamicModel.__init__(self) self.input_netcdf = input_netcdf self.output_netcdf = output_netcdf self.tmpDir = tmpDir self.modelTime = modelTime # a dictionary contains input clone properties (based on the input netcdf file) #~ self.input_clone = vos.netcdfCloneAttributes(self.input_netcdf['file_name'],\ #~ np.round(self.input_netcdf['cell_resolution']*60.,1),\ #~ True) pcr.setclone(self.input_netcdf['clone_file']) self.input_clone = {} self.input_clone['cellsize'] = pcr.clone().cellSize() self.input_clone['rows'] = int(pcr.clone().nrRows()) self.input_clone['cols'] = int(pcr.clone().nrCols()) self.input_clone['xUL'] = round(pcr.clone().west(), 2) self.input_clone['yUL'] = round(pcr.clone().north(), 2) # resampling factor: ratio between output and input resolutions self.resample_factor = self.output_netcdf["cell_resolution"]/\ self.input_netcdf['cell_resolution'] # clone map if self.resample_factor > 1.0: # upscaling # the resample factor must be a rounded value without decimal self.resample_factor = round(self.resample_factor) # output clone properties self.output_netcdf['rows' ] = int(round(float(self.input_clone['rows'])/float(self.resample_factor))) self.output_netcdf['cols' ] = int(round(float(self.input_clone['cols'])/float(self.resample_factor))) self.output_netcdf['cellsize'] = self.output_netcdf["cell_resolution"] self.output_netcdf['xUL' ] = self.input_clone['xUL'] self.output_netcdf['yUL' ] = self.input_clone['yUL'] # get the unique ids for the output resolution # - use the clone for the output resolution (only for a temporary purpose) pcr.setclone(self.output_netcdf['rows' ], self.output_netcdf['cols' ], self.output_netcdf['cellsize'], self.output_netcdf['xUL' ], self.output_netcdf['yUL' ]) # - unique_ids in a numpy object cell_unique_ids = pcr.pcr2numpy(pcr.scalar(pcr.uniqueid(pcr.boolean(1.))),vos.MV) # the remaining pcraster calculations are performed at the input resolution pcr.setclone(self.input_clone['rows' ], self.input_clone['cols' ], self.input_clone['cellsize'], self.input_clone['xUL' ], self.input_clone['yUL' ]) # clone map file self.clone_map_file = self.input_netcdf['clone_file'] # cell unique ids in a pcraster object self.unique_ids = pcr.nominal(pcr.numpy2pcr(pcr.Scalar, vos.regridData2FinerGrid(self.resample_factor,cell_unique_ids, vos.MV), vos.MV)) # cell area (m2) self.cell_area = vos.readPCRmapClone(\ self.input_netcdf["cell_area"],\ self.clone_map_file,\ self.tmpDir) else: # downscaling / resampling to smaller cell length # all pcraster calculations are performed at the output resolution pcr.setclone(self.output_netcdf['rows' ], self.output_netcdf['cols' ], self.output_netcdf['cellsize'], self.output_netcdf['xUL' ], self.output_netcdf['yUL' ]) # clone map file self.clone_map_file = self.output_netcdf['clone_file'] # an object for netcdf reporting self.output = OutputNetcdf(mapattr_dict = self.output_netcdf,\ cloneMapFileName = None,\ netcdf_format = self.output_netcdf['format'],\ netcdf_zlib = self.output_netcdf['zlib'],\ netcdf_attribute_dict = self.output_netcdf['netcdf_attribute'],\ netcdf_attribute_description = None) # preparing the netcdf file at coarse resolution: self.output.createNetCDF(self.output_netcdf['file_name'],\ self.output_netcdf['variable_name'],\ self.output_netcdf['variable_unit'])
def main(): ### Read input arguments ##### logfilename = 'wtools_static_maps.log' parser = OptionParser() usage = "usage: %prog [options]" parser = OptionParser(usage=usage) parser.add_option('-q', '--quiet', dest='verbose', default=True, action='store_false', help='do not print status messages to stdout') parser.add_option('-i', '--ini', dest='inifile', default=None, help='ini file with settings for static_maps.exe') parser.add_option('-s', '--source', dest='source', default='wflow', help='Source folder containing clone (default=./wflow)') parser.add_option('-d', '--destination', dest='destination', default='staticmaps', help='Destination folder (default=./staticmaps)') parser.add_option('-r', '--river', dest='rivshp', default=None, help='river network polyline layer (ESRI Shapefile)') parser.add_option('-c', '--catchment', dest='catchshp', default=None, help='catchment polygon layer (ESRI Shapefile)') parser.add_option('-g', '--gauges', dest='gaugeshp', default=None, help='gauge point layer (ESRI Shapefile)') parser.add_option('-D', '--dem', dest='dem_in', default=None, help='digital elevation model (GeoTiff)') parser.add_option('-L', '--landuse', dest='landuse', default=None, help='land use / land cover layer (GeoTiff)') parser.add_option('-S', '--soiltype', dest='soil', default=None, help='soil type layer (GeoTiff)') parser.add_option( '-V', '--vegetation', dest='lai', default=None, help= 'vegetation LAI layer location (containing 12 GeoTiffs <LAI00000.XXX.tif>)' ) parser.add_option( '-O', '--other_maps', dest='other_maps', default=None, help= 'bracketed [] comma-separated list of paths to other maps that should be reprojected' ) parser.add_option( '-C', '--clean', dest='clean', default=False, action='store_true', help='Clean the .xml files from static maps folder when finished') parser.add_option( '-A', '--alltouch', dest='alltouch', default=False, action='store_true', help= 'option to burn catchments "all touching".\nUseful when catchment-size is small compared to cellsize' ) (options, args) = parser.parse_args() # parse other maps into an array options.other_maps = options.other_maps.replace(' ', '').replace( '[', '').replace(']', '').split(',') options.source = os.path.abspath(options.source) clone_map = os.path.join(options.source, 'mask.map') clone_shp = os.path.join(options.source, 'mask.shp') clone_prj = os.path.join(options.source, 'mask.prj') if None in (options.inifile, options.rivshp, options.catchshp, options.dem_in): msg = """The following files are compulsory: - ini file - DEM (raster) - river (shape) - catchment (shape) """ print(msg) parser.print_help() sys.exit(1) if not os.path.exists(options.inifile): print 'path to ini file cannot be found' sys.exit(1) if not os.path.exists(options.rivshp): print 'path to river shape cannot be found' sys.exit(1) if not os.path.exists(options.catchshp): print 'path to catchment shape cannot be found' sys.exit(1) if not os.path.exists(options.dem_in): print 'path to DEM cannot be found' sys.exit(1) # open a logger, dependent on verbose print to screen or not logger, ch = wtools_lib.setlogger(logfilename, 'WTOOLS', options.verbose) # create directories # TODO: check if workdir is still necessary, try to keep in memory as much as possible # delete old files (when the source and destination folder are different) if np.logical_and(os.path.isdir(options.destination), options.destination is not options.source): shutil.rmtree(options.destination) if options.destination is not options.source: os.makedirs(options.destination) # Read mask if not (os.path.exists(clone_map)): logger.error( 'Clone file {:s} not found. Please run create_grid first.'.format( clone_map)) sys.exit(1) else: # set clone pcr.setclone(clone_map) # get the extent from clone.tif xax, yax, clone, fill_value = gis.gdal_readmap(clone_map, 'GTiff') trans = wtools_lib.get_geotransform(clone_map) extent = wtools_lib.get_extent(clone_map) xmin, ymin, xmax, ymax = extent zeros = np.zeros(clone.shape) ones = pcr.numpy2pcr(pcr.Scalar, np.ones(clone.shape), -9999) # get the projection from clone.tif srs = wtools_lib.get_projection(clone_map) unit_clone = srs.GetAttrValue('UNIT').lower() ### READ CONFIG FILE # open config-file config = wtools_lib.OpenConf(options.inifile) # read settings snapgaugestoriver = wtools_lib.configget(config, 'settings', 'snapgaugestoriver', True, datatype='boolean') burnalltouching = wtools_lib.configget(config, 'settings', 'burncatchalltouching', True, datatype='boolean') burninorder = wtools_lib.configget(config, 'settings', 'burncatchalltouching', False, datatype='boolean') verticetollerance = wtools_lib.configget(config, 'settings', 'vertice_tollerance', 0.0001, datatype='float') ''' read parameters ''' burn_outlets = wtools_lib.configget(config, 'parameters', 'burn_outlets', 10000, datatype='int') burn_rivers = wtools_lib.configget(config, 'parameters', 'burn_rivers', 200, datatype='int') burn_connections = wtools_lib.configget(config, 'parameters', 'burn_connections', 100, datatype='int') burn_gauges = wtools_lib.configget(config, 'parameters', 'burn_gauges', 100, datatype='int') minorder = wtools_lib.configget(config, 'parameters', 'riverorder_min', 3, datatype='int') percentiles = np.array(config.get('parameters', 'statisticmaps', '0, 100').replace(' ', '').split(','), dtype='float') # read the parameters for generating a temporary very high resolution grid if unit_clone == 'degree': cellsize_hr = wtools_lib.configget(config, 'parameters', 'highres_degree', 0.0005, datatype='float') elif (unit_clone == 'metre') or (unit_clone == 'meter'): cellsize_hr = wtools_lib.configget(config, 'parameters', 'highres_metre', 50, datatype='float') cols_hr = int((float(xmax) - float(xmin)) / cellsize_hr + 2) rows_hr = int((float(ymax) - float(ymin)) / cellsize_hr + 2) hr_trans = (float(xmin), cellsize_hr, float(0), float(ymax), 0, -cellsize_hr) clone_hr = os.path.join(options.destination, 'clone_highres.tif') # make a highres clone as well! wtools_lib.CreateTif(clone_hr, rows_hr, cols_hr, hr_trans, srs, 0) # read staticmap locations catchment_map = wtools_lib.configget(config, 'staticmaps', 'catchment', 'wflow_catchment.map') dem_map = wtools_lib.configget(config, 'staticmaps', 'dem', 'wflow_dem.map') demmax_map = wtools_lib.configget(config, 'staticmaps', 'demmax', 'wflow_demmax.map') demmin_map = wtools_lib.configget(config, 'staticmaps', 'demmin', 'wflow_demmin.map') gauges_map = wtools_lib.configget(config, 'staticmaps', 'gauges', 'wflow_gauges.map') landuse_map = wtools_lib.configget(config, 'staticmaps', 'landuse', 'wflow_landuse.map') ldd_map = wtools_lib.configget(config, 'staticmaps', 'ldd', 'wflow_ldd.map') river_map = wtools_lib.configget(config, 'staticmaps', 'river', 'wflow_river.map') outlet_map = wtools_lib.configget(config, 'staticmaps', 'outlet', 'wflow_outlet.map') riverlength_fact_map = wtools_lib.configget(config, 'staticmaps', 'riverlength_fact', 'wflow_riverlength_fact.map') soil_map = wtools_lib.configget(config, 'staticmaps', 'soil', 'wflow_soil.map') streamorder_map = wtools_lib.configget(config, 'staticmaps', 'streamorder', 'wflow_streamorder.map') subcatch_map = wtools_lib.configget(config, 'staticmaps', 'subcatch', 'wflow_subcatch.map') # read mask location (optional) masklayer = wtools_lib.configget(config, 'mask', 'masklayer', options.catchshp) # ???? empty = pcr.ifthen(ones == 0, pcr.scalar(0)) # TODO: check if extents are correct this way # TODO: check what the role of missing values is in zeros and ones (l. 123 in old code) # first add a missing value to dem_in ds = gdal.Open(options.dem_in, gdal.GA_Update) RasterBand = ds.GetRasterBand(1) fill_val = RasterBand.GetNoDataValue() if fill_val is None: RasterBand.SetNoDataValue(-9999) ds = None # reproject to clone map: see http://stackoverflow.com/questions/10454316/how-to-project-and-resample-a-grid-to-match-another-grid-with-gdal-python # resample DEM logger.info('Resampling dem from {:s} to {:s}'.format( os.path.abspath(options.dem_in), os.path.join(options.destination, dem_map))) gis.gdal_warp(options.dem_in, clone_map, os.path.join(options.destination, dem_map), format='PCRaster', gdal_interp=gdalconst.GRA_Average) # retrieve amount of rows and columns from clone # TODO: make windowstats applicable to source/target with different projections. This does not work yet. # retrieve srs from DEM try: srs_dem = wtools_lib.get_projection(options.dem_in) except: logger.warning( 'No projection found in DEM, assuming WGS 1984 lat long') srs_dem = osr.SpatialReference() srs_dem.ImportFromEPSG(4326) clone2dem_transform = osr.CoordinateTransformation(srs, srs_dem) #if srs.ExportToProj4() == srs_dem.ExportToProj4(): for percentile in percentiles: if percentile >= 100: logger.info('computing window maximum') percentile_dem = os.path.join(options.destination, 'wflow_dem_max.map') elif percentile <= 0: logger.info('computing window minimum') percentile_dem = os.path.join(options.destination, 'wflow_dem_min.map') else: logger.info('computing window {:d} percentile'.format( int(percentile))) percentile_dem = os.path.join( options.destination, 'wflow_dem_{:03d}.map'.format(int(percentile))) percentile_dem = os.path.join( options.destination, 'wflow_dem_{:03d}.map'.format(int(percentile))) stats = wtools_lib.windowstats(options.dem_in, len(yax), len(xax), trans, srs, percentile_dem, percentile, transform=clone2dem_transform, logger=logger) # else: # logger.warning('Projections of DEM and clone are different. DEM statistics for different projections is not yet implemented') """ # burn in rivers # first convert and clip the river shapefile # retrieve river shape projection, if not available assume EPSG:4326 file_att = os.path.splitext(os.path.basename(options.rivshp))[0] ds = ogr.Open(options.rivshp) lyr = ds.GetLayerByName(file_att) extent = lyr.GetExtent() extent_in = [extent[0], extent[2], extent[1], extent[3]] try: # get spatial reference from shapefile srs_rivshp = lyr.GetSpatialRef() logger.info('Projection in river shapefile is {:s}'.format(srs_rivshp.ExportToProj4())) except: logger.warning('No projection found in {:s}, assuming WGS 1984 lat-lon'.format(options.rivshp)) srs_rivshp = osr.SpatialReference() srs_rivshp.ImportFromEPSG(4326) rivprojshp = os.path.join(options.destination, 'rivshp_proj.shp') logger.info('Projecting and clipping {:s} to {:s}'.format(options.rivshp, rivprojshp)) # TODO: Line below takes a very long time to process, the bigger the shapefile, the more time. How do we deal with this? call(('ogr2ogr','-s_srs', srs_rivshp.ExportToProj4(),'-t_srs', srs.ExportToProj4(), '-clipsrc', '{:f}'.format(xmin), '{:f}'.format(ymin), '{:f}'.format(xmax), '{:f}'.format(ymax), rivprojshp, options.rivshp)) """ # TODO: BURNING!! # project catchment layer to projection of clone file_att = os.path.splitext(os.path.basename(options.catchshp))[0] print options.catchshp ds = ogr.Open(options.catchshp) lyr = ds.GetLayerByName(file_att) extent = lyr.GetExtent() extent_in = [extent[0], extent[2], extent[1], extent[3]] try: # get spatial reference from shapefile srs_catchshp = lyr.GetSpatialRef() logger.info('Projection in catchment shapefile is {:s}'.format( srs_catchshp.ExportToProj4())) except: logger.warning( 'No projection found in {:s}, assuming WGS 1984 lat-lon'.format( options.catchshp)) srs_catchshp = osr.SpatialReference() srs_catchshp.ImportFromEPSG(4326) catchprojshp = os.path.join(options.destination, 'catchshp_proj.shp') logger.info('Projecting {:s} to {:s}'.format(options.catchshp, catchprojshp)) call(('ogr2ogr', '-s_srs', srs_catchshp.ExportToProj4(), '-t_srs', srs.ExportToProj4(), '-clipsrc', '{:f}'.format(xmin), '{:f}'.format(ymin), '{:f}'.format(xmax), '{:f}'.format(ymax), catchprojshp, options.catchshp)) # logger.info('Calculating ldd') ldddem = pcr.readmap(os.path.join(options.destination, dem_map)) ldd_select = pcr.lddcreate(ldddem, 1e35, 1e35, 1e35, 1e35) pcr.report(ldd_select, os.path.join(options.destination, 'wflow_ldd.map')) # compute stream order, identify river cells streamorder = pcr.ordinal(pcr.streamorder(ldd_select)) river = pcr.ifthen(streamorder >= pcr.ordinal(minorder), pcr.boolean(1)) # find the minimum value in the DEM and cover missing values with a river with this value. Effect is none!! so now left out! # mindem = int(np.min(pcr.pcr2numpy(pcr.ordinal(os.path.join(options.destination, dem_map)),9999999))) # dem_resample_map = pcr.cover(os.path.join(options.destination, dem_map), pcr.scalar(river)*0+mindem) # pcr.report(dem_resample_map, os.path.join(options.destination, dem_map)) pcr.report(streamorder, os.path.join(options.destination, streamorder_map)) pcr.report(river, os.path.join(options.destination, river_map)) # deal with your catchments if options.gaugeshp == None: logger.info('No gauges defined, using outlets instead') gauges = pcr.ordinal( pcr.uniqueid( pcr.boolean( pcr.ifthen(pcr.scalar(ldd_select) == 5, pcr.boolean(1))))) pcr.report(gauges, os.path.join(options.destination, gauges_map)) # TODO: Add the gauge shape code from StaticMaps.py (line 454-489) # TODO: add river length map (see SticMaps.py, line 492-499) # report river length # make a high resolution empty map dem_hr_file = os.path.join(options.destination, 'dem_highres.tif') burn_hr_file = os.path.join(options.destination, 'burn_highres.tif') demburn_hr_file = os.path.join(options.destination, 'demburn_highres.map') riv_hr_file = os.path.join(options.destination, 'riv_highres.map') gis.gdal_warp(options.dem_in, clone_hr, dem_hr_file) # wtools_lib.CreateTif(riv_hr, rows_hr, cols_hr, hr_trans, srs, 0) file_att = os.path.splitext(os.path.basename(options.rivshp))[0] # open the shape layer ds = ogr.Open(options.rivshp) lyr = ds.GetLayerByName(file_att) gis.ogr_burn(lyr, clone_hr, -100, file_out=burn_hr_file, format='GTiff', gdal_type=gdal.GDT_Float32, fill_value=0) # read dem and burn values and add xax_hr, yax_hr, burn_hr, fill = gis.gdal_readmap(burn_hr_file, 'GTiff') burn_hr[burn_hr == fill] = 0 xax_hr, yax_hr, dem_hr, fill = gis.gdal_readmap(dem_hr_file, 'GTiff') dem_hr[dem_hr == fill] = np.nan demburn_hr = dem_hr + burn_hr demburn_hr[np.isnan(demburn_hr)] = -9999 gis.gdal_writemap(demburn_hr_file, 'PCRaster', xax_hr, yax_hr, demburn_hr, -9999.) pcr.setclone(demburn_hr_file) demburn_hr = pcr.readmap(demburn_hr_file) ldd_hr = pcr.lddcreate(demburn_hr, 1e35, 1e35, 1e35, 1e35) pcr.report(ldd_hr, os.path.join(options.destination, 'ldd_hr.map')) pcr.setglobaloption('unitcell') riv_hr = pcr.scalar( pcr.streamorder(ldd_hr) >= minorder) * pcr.downstreamdist(ldd_hr) pcr.report(riv_hr, riv_hr_file) pcr.setglobaloption('unittrue') pcr.setclone(clone_map) logger.info('Computing river length') #riverlength = wt.windowstats(riv_hr,clone_rows,clone_columns,clone_trans,srs_clone,resultdir,'frac',clone2dem_transform) riverlength = wtools_lib.windowstats(riv_hr_file, len(yax), len(xax), trans, srs, os.path.join(options.destination, riverlength_fact_map), stat='fact', logger=logger) # TODO: nothing happends with the river lengths yet. Need to decide how to use these # report outlet map pcr.report(pcr.ifthen(pcr.ordinal(ldd_select) == 5, pcr.ordinal(1)), os.path.join(options.destination, outlet_map)) # report subcatchment map subcatchment = pcr.subcatchment(ldd_select, gauges) pcr.report(pcr.ordinal(subcatchment), os.path.join(options.destination, subcatch_map)) # Report land use map if options.landuse == None: logger.info( 'No land use map used. Preparing {:s} with only ones.'.format( os.path.join(options.destination, landuse_map))) pcr.report(pcr.nominal(ones), os.path.join(options.destination, landuse_map)) else: logger.info('Resampling land use from {:s} to {:s}'.format( os.path.abspath(options.landuse), os.path.join(options.destination, os.path.abspath(landuse_map)))) gis.gdal_warp(options.landuse, clone_map, os.path.join(options.destination, landuse_map), format='PCRaster', gdal_interp=gdalconst.GRA_Mode, gdal_type=gdalconst.GDT_Int32) # report soil map if options.soil == None: logger.info('No soil map used. Preparing {:s} with only ones.'.format( os.path.join(options.destination, soil_map))) pcr.report(pcr.nominal(ones), os.path.join(options.destination, soil_map)) else: logger.info('Resampling soil from {:s} to {:s}'.format( os.path.abspath(options.soil), os.path.join(options.destination, os.path.abspath(soil_map)))) gis.gdal_warp(options.soil, clone_map, os.path.join(options.destination, soil_map), format='PCRaster', gdal_interp=gdalconst.GRA_Mode, gdal_type=gdalconst.GDT_Int32) if options.lai == None: logger.info( 'No vegetation LAI maps used. Preparing default maps {:s} with only ones.' .format(os.path.join(options.destination, soil_map))) pcr.report(pcr.nominal(ones), os.path.join(options.destination, soil_map)) else: dest_lai = os.path.join(options.destination, 'clim') os.makedirs(dest_lai) for month in range(12): lai_in = os.path.join(options.lai, 'LAI00000.{:03d}'.format(month + 1)) lai_out = os.path.join(dest_lai, 'LAI00000.{:03d}'.format(month + 1)) logger.info('Resampling vegetation LAI from {:s} to {:s}'.format( os.path.abspath(lai_in), os.path.abspath(lai_out))) gis.gdal_warp(lai_in, clone_map, lai_out, format='PCRaster', gdal_interp=gdalconst.GRA_Bilinear, gdal_type=gdalconst.GDT_Float32) # report soil map if options.other_maps == None: logger.info('No other maps used. Skipping other maps.') else: logger.info('Resampling list of other maps...') for map_file in options.other_maps: map_name = os.path.split(map_file)[1] logger.info('Resampling a map from {:s} to {:s}'.format( os.path.abspath(map_file), os.path.join(options.destination, map_name))) gis.gdal_warp(map_file, clone_map, os.path.join(options.destination, map_name), format='PCRaster', gdal_interp=gdalconst.GRA_Mode, gdal_type=gdalconst.GDT_Float32) if options.clean: wtools_lib.DeleteList(glob.glob( os.path.join(options.destination, '*.xml')), logger=logger) wtools_lib.DeleteList(glob.glob( os.path.join(options.destination, 'clim', '*.xml')), logger=logger) wtools_lib.DeleteList(glob.glob( os.path.join(options.destination, '*highres*')), logger=logger)
num_of_rows_30sec = str(vos.getMapAttributesALL(output_file)["rows"] / 10.) num_of_cols_30sec = str(vos.getMapAttributesALL(output_file)["cols"] / 10.) x_coordinate = str(vos.getMapAttributesALL(output_file)["xUL"]) y_coordinate = str(vos.getMapAttributesALL(output_file)["yUL"]) cellsize_30sec = "0.00833333333333333333333333333333333333333333333333333333333333333333333333333333" output_file = output_folder + "/" + tile_code + ".30sec.clo.map" cmd = "mapattr -s -R " + num_of_rows_30sec + " -C " + num_of_cols_30sec + " -B -P yb2t -x " + x_coordinate + " -y " + y_coordinate + " -l " + cellsize_30sec + " " + output_file print(cmd) os.system(cmd) # give the ids for every 30 arc sec cell (e.g. pcrcalc dem_tif_n60w180_30sec.ids.map = "nominal(uniqueid(dem_tif_n60w180_30sec.clo.map))") input_file = output_file output_file = output_folder + "/" + tile_code + ".30sec.ids.map" pcr.setclone(input_file) print("Making the clone map at 30 arcsec resolution.") unique_ids_30sec = pcr.nominal(pcr.uniqueid(input_file)) pcr.report(unique_ids_30sec, output_file) # - Note that this map has 30 arc sec resolution. # resample the ids map to 3 arc sec resolution (e.g. gdalwarp -tr 0.00083333333333333333333333333333333333333 0.00083333333333333333333333333333333333333 dem_tif_n60w180_30sec.ids.map dem_tif_n60w180_30sec.ids.3sec.tif input_file = output_file output_file = output_folder + "/" + tile_code + ".30sec.ids.3sec.tif" cellsize_3sec = "0.000833333333333333333333333333333333333333333333333333333333333333333333333333333" cmd = "gdalwarp -tr " + cellsize_3sec + " " + cellsize_3sec + " " + input_file + " " + output_file print(cmd) os.system(cmd) # - This still a tif file. # convert the tif file to PCRaster map input_file = output_file output_file = output_folder + "/" + tile_code + ".30sec.ids.3sec.map"
def main(): clone_map = "mask\mask.map" clone_shp = "mask\mask.shp" clone_prj = "mask\mask.prj" workdir = "work\\" resultdir = "staticmaps\\" ''' read commandline arguments ''' argv = sys.argv clone_EPSG = False try: opts, args = getopt.getopt(argv[1:], 'i:g:p:r:c:d:l:s:CA') except getopt.error: print 'fout' Usage() sys.exit(1) inifile = None rivshp = None catchshp = None dem_in = None landuse = None soiltype = None clean = False gaugeshp = None alltouching = False for o, a in opts: if o == '-i': inifile = a if o == '-p': clone_EPSG = 'EPSG:' + a if o == '-r': rivshp = a if o == '-c': catchshp = a if o == '-d': dem_in = a if o == '-l': landuse = a if o == '-s': soiltype = a if o == '-C': clean = True if o == '-g': gaugeshp = a if o == '-A': alltouching = True if inifile == None or rivshp == None or catchshp == None or dem_in == None: print 'the following files are compulsory:' print ' - ini-file' print ' - DEM (raster)' print ' - river (shape)' print ' - catchment (shape)' Usage() sys.exit(1) if landuse == None: print 'no raster with landuse classifications is specified. 1 class will be applied for the entire domain' if soiltype == None: print 'no raster with soil classifications is specified. 1 class will be applied for the entire domain' ''' read mask ''' if not os.path.exists(clone_map): print 'Mask not found. Make sure the file mask\mask.map exists' print 'This file is usually created with the CreateGrid script' sys.exit(1) else: pcr.setclone(clone_map) ds = gdal.Open(clone_map, GA_ReadOnly) clone_trans = ds.GetGeoTransform() cellsize = clone_trans[1] clone_rows = ds.RasterYSize clone_columns = ds.RasterXSize extent_mask = [ clone_trans[0], clone_trans[3] - ds.RasterYSize * cellsize, clone_trans[0] + ds.RasterXSize * cellsize, clone_trans[3] ] xmin, ymin, xmax, ymax = map(str, extent_mask) ds = None ones = pcr.scalar(pcr.readmap(clone_map)) zeros = ones * 0 empty = pcr.ifthen(ones == 0, pcr.scalar(0)) ''' read projection from mask.shp ''' # TODO: check how to deal with projections (add .prj to mask.shp in creategrid) if not os.path.exists(clone_prj): print 'please add prj-file to mask.shp' sys.exit(1) if os.path.exists(clone_shp): ds = ogr.Open(clone_shp) file_att = os.path.splitext(os.path.basename(clone_shp))[0] lyr = ds.GetLayerByName(file_att) spatialref = lyr.GetSpatialRef() if not spatialref == None: srs_clone = osr.SpatialReference() srs_clone.ImportFromWkt(spatialref.ExportToWkt()) srs_clone.AutoIdentifyEPSG() unit_clone = False unit_clone = srs_clone.GetAttrValue('UNIT').lower() #clone_EPSG = 'EPSG:'+srs_clone.GetAttrValue("AUTHORITY",1) # TODO: fix hard EPSG code below clone_EPSG = 'EPSG:' + '4167' print 'EPSG-code is read from mask.shp: ' + clone_EPSG spatialref == None if not clone_EPSG: print 'EPSG-code cannot be read from mask.shp' print 'please add prj-file to mask.shp or specify on command line' print 'e.g. -p EPSG:4326 (for WGS84 lat lon projection)' ds = None clone_EPSG_int = int(clone_EPSG[5:len(clone_EPSG)]) ''' open config-file ''' config = wt.OpenConf(inifile) ''' read settings ''' snapgaugestoriver = bool( int(wt.configget(config, "settings", "snapgaugestoriver", "1"))) burnalltouching = bool( int(wt.configget(config, "settings", "burncatchalltouching", "1"))) burninorder = bool( int(wt.configget(config, "settings", "burncatchalltouching", "0"))) verticetollerance = float( wt.configget(config, "settings", "vertice_tollerance", "0.0001")) ''' read parameters ''' burn_outlets = int( wt.configget(config, "parameters", "burn_outlets", 10000)) burn_rivers = int(wt.configget(config, "parameters", "burn_rivers", 200)) burn_connections = int( wt.configget(config, "parameters", "burn_connections", 100)) burn_gauges = int(wt.configget(config, "parameters", "burn_gauges", 100)) minorder = int(wt.configget(config, "parameters", "riverorder_min", 3)) exec "percentile=tr.array(" + wt.configget(config, "parameters", "statisticmaps", [0, 100]) + ")" if not unit_clone: print 'failed to read unit (meter or degree) from mask projection' unit_clone = str(wt.configget(config, "settings", "unit", 'meter')) print 'unit read from settings: ' + unit_clone if unit_clone == 'degree': cellsize_hr = float( wt.configget(config, "parameters", "highres_degree", 0.0005)) elif (unit_clone == 'metre') or (unit_clone == 'meter'): cellsize_hr = float( wt.configget(config, "parameters", "highres_metre", 50)) cols_hr = int((float(xmax) - float(xmin)) / cellsize_hr + 2) rows_hr = int((float(ymax) - float(ymin)) / cellsize_hr + 2) hr_trans = (float(xmin), cellsize_hr, float(0), float(ymax), 0, -cellsize_hr) ''' read staticmap locations ''' catchment_map = wt.configget(config, "staticmaps", "catchment", "wflow_catchment.map") dem_map = wt.configget(config, "staticmaps", "dem", "wflow_dem.map") demmax_map = wt.configget(config, "staticmaps", "demmax", "wflow_demmax.map") demmin_map = wt.configget(config, "staticmaps", "demmin", "wflow_demmin.map") gauges_map = wt.configget(config, "staticmaps", "gauges", "wflow_gauges.map") landuse_map = wt.configget(config, "staticmaps", "landuse", "wflow_landuse.map") ldd_map = wt.configget(config, "staticmaps", "ldd", "wflow_ldd.map") river_map = wt.configget(config, "staticmaps", "river", "wflow_river.map") outlet_map = wt.configget(config, "staticmaps", "outlet", "wflow_outlet.map") riverlength_fact_map = wt.configget(config, "staticmaps", "riverlength_fact", "wflow_riverlength_fact.map") soil_map = wt.configget(config, "staticmaps", "soil", "wflow_soil.map") streamorder_map = wt.configget(config, "staticmaps", "streamorder", "wflow_streamorder.map") subcatch_map = wt.configget(config, "staticmaps", "subcatch", "wflow_subcatch.map") ''' read mask location (optional) ''' masklayer = wt.configget(config, "mask", "masklayer", catchshp) ''' create directories ''' if os.path.isdir(workdir): shutil.rmtree(workdir) os.makedirs(workdir) if os.path.isdir(resultdir): shutil.rmtree(resultdir) os.makedirs(resultdir) ''' Preperation steps ''' zero_map = workdir + "zero.map" zero_tif = workdir + "zero.tif" pcr.report(zeros, zero_map) # TODO: replace gdal_translate call call(('gdal_translate', '-of', 'GTiff', '-a_srs', clone_EPSG, '-ot', 'Float32', zero_map, zero_tif)) pcr.setglobaloption("lddin") ''' resample DEM ''' dem_resample = workdir + "dem_resampled.tif" ds = gdal.Open(dem_in, GA_ReadOnly) band = ds.GetRasterBand(1) nodata = band.GetNoDataValue() proj = ds.GetGeoTransform() cellsize_dem = proj[1] ''' read DEM projection ''' spatialref == None spatialref = ds.GetProjection() if not spatialref == None: srs = osr.SpatialReference() srs.ImportFromWkt(spatialref) srs.AutoIdentifyEPSG() dem_EPSG = 'EPSG:' + srs.GetAttrValue("AUTHORITY", 1) print 'EPSG-code is read from ' + os.path.basename( dem_in) + ': ' + dem_EPSG spatialref == None dem_EPSG_int = int(dem_EPSG[5:len(dem_EPSG)]) srs_DEM = osr.SpatialReference() srs_DEM.ImportFromEPSG(dem_EPSG_int) clone2dem_transform = osr.CoordinateTransformation(srs_clone, srs_DEM) else: dem_EPSG = clone_EPSG print 'No projection defined for ' + os.path.basename(dem_in) print 'Assumed to be the same as model projection (' + clone_EPSG + ')' ds = None print 'Resampling DEM...' if nodata == None: call(('gdalwarp', '-overwrite', '-t_srs', clone_prj, '-te', xmin, ymin, xmax, ymax, '-tr', str(cellsize), str(-cellsize), '-dstnodata', str(-9999), '-r', 'cubic', dem_in, dem_resample)) else: call(('gdalwarp', '-overwrite', '-t_srs', clone_prj, '-te', xmin, ymin, xmax, ymax, '-tr', str(cellsize), str(-cellsize), '-srcnodata', str(nodata), '-dstnodata', str(nodata), '-r', 'cubic', dem_in, dem_resample)) ''' create dem.map and statistic maps ''' dem_resample_map = resultdir + dem_map call(('gdal_translate', '-of', 'PCRaster', '-a_srs', clone_EPSG, '-ot', 'Float32', dem_resample, dem_resample_map)) print 'Computing DEM statistics ....' stats = wt.windowstats(dem_in, clone_rows, clone_columns, clone_trans, srs_clone, resultdir, percentile) ''' burn DEM ''' ds = ogr.Open(rivshp) file_att = os.path.splitext(os.path.basename(rivshp))[0] lyr = ds.GetLayerByName(file_att) spatialref = lyr.GetSpatialRef() # if not spatialref == None: # srs = osr.SpatialReference() # srs.ImportFromWkt(spatialref.ExportToWkt()) # srs.AutoIdentifyEPSG() # rivshp_EPSG = 'EPSG:'+srs.GetAttrValue("AUTHORITY",1) # spatialref == None # else: rivshp_EPSG = clone_EPSG print 'No projection defined for ' + file_att + '.shp' print 'Assumed to be the same as model projection (' + clone_EPSG + ')' # strip rivers to nodes xminc = str(float(xmin) + 0.5 * cellsize) yminc = str(float(ymin) + 0.5 * cellsize) xmaxc = str(float(xmax) - 0.5 * cellsize) ymaxc = str(float(ymax) - 0.5 * cellsize) if rivshp_EPSG == clone_EPSG: rivclipshp = workdir + 'rivshape_clip.shp' call(('ogr2ogr', '-s_srs', clone_EPSG, '-t_srs', clone_EPSG, '-spat', xmin, ymin, xmax, ymax, '-clipsrc', xminc, yminc, xmaxc, ymaxc, rivclipshp, rivshp)) else: rivprojshp = workdir + 'rivshape_proj.shp' rivclipshp = workdir + 'rivshape_clip.shp' call(('ogr2ogr', '-s_srs', rivshp_EPSG, '-t_srs', clone_EPSG, '-spat', xmin, ymin, xmax, ymax, rivprojshp, rivshp)) call(('ogr2ogr', '-s_srs', clone_EPSG, '-t_srs', clone_EPSG, '-spat', xmin, ymin, xmax, ymax, '-clipsrc', xminc, yminc, xmaxc, ymaxc, rivclipshp, rivprojshp)) rivshp = rivclipshp #### BURNING BELOW #### # TODO: check if extraction can be done within memory and retun a burn layer shapes = wt.Reach2Nodes(rivclipshp, clone_EPSG_int, cellsize * verticetollerance, workdir) outlets = shapes[1] connections = shapes[2] outlets_att = os.path.splitext(os.path.basename(outlets))[0] connections_att = os.path.splitext(os.path.basename(connections))[0] dem_resample_att = os.path.splitext(os.path.basename(dem_resample))[0] connections_tif = workdir + connections_att + ".tif" outlets_tif = workdir + outlets_att + ".tif" # TODO: make the burning in memory call(('gdal_translate', '-of', 'GTiff', '-a_srs', clone_EPSG, '-ot', 'Float32', zero_map, connections_tif)) call(('gdal_translate', '-of', 'GTiff', '-a_srs', clone_EPSG, '-ot', 'Float32', zero_map, outlets_tif)) call(('gdal_rasterize', '-burn', '1', '-l', outlets_att, outlets, outlets_tif)) call(('gdal_rasterize', '-burn', '1', '-l', connections_att, connections, connections_tif)) # convert rivers to order rivshp_att = os.path.splitext(os.path.basename(rivshp))[0] rivers_tif = workdir + rivshp_att + ".tif" call(('gdal_translate', '-of', 'GTiff', '-a_srs', clone_EPSG, '-ot', 'Float32', zero_map, rivers_tif)) if burninorder: # make river shape with an order attribute OrderSHPs = wt.ReachOrder(rivshp, clone_EPSG_int, cellsize * verticetollerance, workdir) wt.Burn2Tif(OrderSHPs, 'order', rivers_tif) else: call(('gdal_rasterize', '-burn', '1', '-l', rivshp_att, rivshp, rivers_tif)) # convert 2 maps connections_map = workdir + connections_att + ".map" rivers_map = workdir + rivshp_att + ".map" outlets_map = workdir + outlets_att + ".map" call(('gdal_translate', '-of', 'PCRaster', '-a_srs', clone_EPSG, '-ot', 'Float32', connections_tif, connections_map)) call(('gdal_translate', '-of', 'PCRaster', '-a_srs', clone_EPSG, '-ot', 'Float32', rivers_tif, rivers_map)) call(('gdal_translate', '-of', 'PCRaster', '-a_srs', clone_EPSG, '-ot', 'Float32', outlets_tif, outlets_map)) # burn the layers in DEM outletsburn = pcr.scalar( pcr.readmap(outlets_map)) * pcr.scalar(burn_outlets) connectionsburn = pcr.scalar( pcr.readmap(connections_map)) * pcr.scalar(burn_connections) riverburn = pcr.scalar(pcr.readmap(rivers_map)) * pcr.scalar(burn_rivers) ldddem = pcr.cover(dem_resample_map, pcr.ifthen(riverburn > 0, pcr.scalar(0))) ldddem = ldddem - outletsburn - connectionsburn - riverburn ldddem = pcr.cover(ldddem, pcr.scalar(0)) pcr.report(ldddem, workdir + "dem_burn.map") ''' create ldd for multi-catchments ''' ldd = pcr.ldd(empty) # reproject catchment shape-file ds = ogr.Open(catchshp) file_att = os.path.splitext(os.path.basename(catchshp))[0] lyr = ds.GetLayerByName(file_att) spatialref = lyr.GetSpatialRef() # if not spatialref == None: # srs = osr.SpatialReference() # srs.ImportFromWkt(spatialref.ExportToWkt()) # srs.AutoIdentifyEPSG() # catchshp_EPSG = 'EPSG:'+srs.GetAttrValue("AUTHORITY",1) # spatialref == None # else: catchshp_EPSG = clone_EPSG print 'No projection defined for ' + file_att + '.shp' print 'Assumed to be the same as model projection (' + clone_EPSG + ')' if not rivshp_EPSG == clone_EPSG: catchprojshp = workdir + 'catchshape_proj.shp' call(('ogr2ogr', '-s_srs', catchshp_EPSG, '-t_srs', clone_ESPG, catchprojshp, catchshp)) catchshp = catchprojshp ds.Destroy() ds = ogr.Open(catchshp) file_att = os.path.splitext(os.path.basename(catchshp))[0] lyr = ds.GetLayerByName(file_att) fieldDef = ogr.FieldDefn("ID", ogr.OFTString) fieldDef.SetWidth(12) TEMP_out = Driver.CreateDataSource(workdir + "temp.shp") if not srs == None: TEMP_LYR = TEMP_out.CreateLayer("temp", srs, geom_type=ogr.wkbMultiPolygon) else: TEMP_LYR = TEMP_out.CreateLayer("temp", geom_type=ogr.wkbMultiPolygon) TEMP_LYR.CreateField(fieldDef) for i in range(lyr.GetFeatureCount()): orgfeature = lyr.GetFeature(i) geometry = orgfeature.geometry() feature = ogr.Feature(TEMP_LYR.GetLayerDefn()) feature.SetGeometry(geometry) feature.SetField("ID", str(i + 1)) TEMP_LYR.CreateFeature(feature) TEMP_out.Destroy() ds.Destroy # rasterize catchment map catchments_tif = workdir + "catchments.tif" catchments_map = workdir + "catchments.map" call(('gdal_translate', '-of', 'GTiff', '-a_srs', clone_EPSG, zero_map, catchments_tif)) if alltouching: call(('gdal_rasterize', '-at', '-a', 'ID', '-l', "temp", workdir + 'temp.shp', catchments_tif)) else: call(('gdal_rasterize', '-a', 'ID', '-l', "temp", workdir + 'temp.shp', catchments_tif)) call(('gdal_translate', '-of', 'PCRaster', '-a_srs', clone_EPSG, catchments_tif, catchments_map)) catchments = pcr.readmap(catchments_map) riverunique = pcr.clump(pcr.nominal(pcr.ifthen(riverburn > 0, riverburn))) rivercatch = pcr.areamajority(pcr.ordinal(catchments), riverunique) #catchments = pcr.cover(pcr.ordinal(rivercatch),pcr.ordinal(pcr.ifthen(catchments > 0, catchments)),pcr.ordinal(0)) catchments = pcr.cover( pcr.ifthen(catchments > 0, pcr.ordinal(catchments)), pcr.ifthen( riverburn > 0, pcr.ordinal( pcr.spreadzone(pcr.nominal(catchments), pcr.ifthen(riverburn > 0, pcr.scalar(1)), 1)))) rivercatch_map = workdir + "catchments_river.map" catchclip_map = workdir + "catchments_clip.map" pcr.report(rivercatch, rivercatch_map) pcr.report(catchments, catchclip_map) ds = ogr.Open(workdir + "temp.shp") lyr = ds.GetLayerByName("temp") print 'calculating ldd' for i in range(lyr.GetFeatureCount()): feature = lyr.GetFeature(i) catch = int(feature.GetField("ID")) print "calculating ldd for catchment: " + str(i + 1) + "/" + str( lyr.GetFeatureCount()) + "...." ldddem_select = pcr.scalar(pcr.ifthen(catchments == catch, catchments)) * 0 + 1 * ldddem ldd_select = pcr.lddcreate(ldddem_select, float("1E35"), float("1E35"), float("1E35"), float("1E35")) ldd = pcr.cover(ldd, ldd_select) pcr.report(ldd, resultdir + ldd_map) ds.Destroy() ''' report stream order, river and dem ''' streamorder = pcr.ordinal(pcr.streamorder(ldd)) river = pcr.ifthen(streamorder >= pcr.ordinal(minorder), pcr.boolean(1)) mindem = int(np.min(pcr.pcr2numpy(pcr.ordinal(dem_resample_map), 9999999))) dem_resample_map = pcr.cover(dem_resample_map, pcr.scalar(river) * 0 + mindem) pcr.report(dem_resample_map, resultdir + dem_map) pcr.report(streamorder, resultdir + streamorder_map) pcr.report(river, resultdir + river_map) ''' deal with your catchments ''' if gaugeshp == None: print 'No gauges defined, using outlets instead' gauges = pcr.ordinal( pcr.uniqueid( pcr.boolean(pcr.ifthen(pcr.scalar(ldd) == 5, pcr.boolean(1))))) pcr.report(gauges, resultdir + gauges_map) # ds = ogr.Open(gaugeshp) # file_att = os.path.splitext(os.path.basename(gaugeshp))[0] # lyr = ds.GetLayerByName(file_att) # spatialref = lyr.GetSpatialRef() ## if not spatialref == None: ## srs = osr.SpatialReference() ## srs.ImportFromWkt(spatialref.ExportToWkt()) ## srs.AutoIdentifyEPSG() ## gaugeshp_EPSG = 'EPSG:'+srs.GetAttrValue("AUTHORITY",1) ## spatialref == None # #else: # gaugeshp_EPSG = clone_EPSG # print 'No projection defined for ' + file_att + '.shp' # print 'Assumed to be the same as model projection (' + clone_EPSG + ')' # # # reproject gauge shape if necesarry # if not gaugeshp_EPSG == clone_EPSG: # gaugeprojshp = workdir + 'gaugeshape_proj.shp' # call(('ogr2ogr','-s_srs',rivshp_EPSG,'-t_srs',clone_ESPG,gaugeprojshp,gaugeshp)) # gaugeshp = gaugeprojshp # # file_att = os.path.splitext(os.path.basename(gaugeshp))[0] # gaugestif = workdir + file_att + '.tif' # gaugesmap = workdir + file_att + '.map' # call(('gdal_translate','-of','GTiff','-a_srs',clone_EPSG,zero_map,gaugestif)) # call(('gdal_rasterize','-burn','1','-l',file_att,gaugeshp,gaugestif)) # call(('gdal_translate','-of','PCRaster','-a_srs',clone_EPSG,gaugestif,gaugesmap)) # gaugelocs = pcr.readmap(gaugesmap) # snapgaugestoriver = True # # if snapgaugestoriver: # print "Snapping gauges to river" # gauges = pcr.uniqueid(pcr.boolean(gaugelocs)) # gauges= wt.snaptomap(pcr.ordinal(gauges),river) # # gaugesmap = pcr.ifthen(gauges > 0, gauges) ''' report riverlengthfrac ''' riv_hr = workdir + 'river_highres.tif' wt.CreateTif(riv_hr, rows_hr, cols_hr, hr_trans, srs_clone, 0) file_att = os.path.splitext(os.path.basename(rivshp))[0] call(('gdal_rasterize', '-burn', '1', '-l', file_att, rivshp, riv_hr)) print 'Computing river length...' #riverlength = wt.windowstats(riv_hr,clone_rows,clone_columns,clone_trans,srs_clone,resultdir,'frac',clone2dem_transform) riverlength = wt.windowstats(riv_hr, clone_rows, clone_columns, clone_trans, srs_clone, resultdir, 'frac') ''' report outlet map ''' pcr.report(pcr.ifthen(pcr.ordinal(ldd) == 5, pcr.ordinal(1)), resultdir + outlet_map) ''' report map ''' catchment = pcr.ifthen(catchments > 0, pcr.ordinal(1)) pcr.report(catchment, resultdir + catchment_map) ''' report subcatchment map ''' subcatchment = pcr.subcatchment(ldd, gauges) pcr.report(pcr.ordinal(subcatchment), resultdir + subcatch_map) ''' report landuse map ''' if landuse == None: pcr.report(pcr.nominal(ones), resultdir + landuse_map) else: landuse_resample = workdir + 'landuse.tif' landuse_map = resultdir + landuse_map transform = wt.GetRasterTranform(landuse, srs_clone) if not transform[0]: call(('gdalwarp', '-overwrite', '-s_srs', clone_EPSG, '-t_srs', clone_EPSG, '-te', xmin, ymin, xmax, ymax, '-tr', str(cellsize), str(-cellsize), '-r', 'mode', landuse, landuse_resample)) else: call(('gdalwarp', '-overwrite', '-s_srs', transform[1], '-t_srs', clone_EPSG, '-te', xmin, ymin, xmax, ymax, '-tr', str(cellsize), str(-cellsize), '-r', 'mode', landuse, landuse_resample)) call(('gdal_translate', '-of', 'PCRaster', '-ot', 'Float32', landuse_resample, landuse_map)) landuse_work = pcr.readmap(landuse_map) pcr.report(pcr.nominal(landuse_work), landuse_map) ''' report soil map ''' if soiltype == None: pcr.report(pcr.nominal(ones), resultdir + soil_map) else: soiltype_resample = workdir + 'soiltype.tif' soil_map = resultdir + soil_map #transform = wt.GetRasterTranform(soiltype,srs_clone) # if not transform[0]: call(('gdalwarp', '-overwrite', '-s_srs', clone_EPSG, '-t_srs', clone_EPSG, '-te', xmin, ymin, xmax, ymax, '-tr', str(cellsize), str(-cellsize), '-r', 'mode', soiltype, soiltype_resample)) # else: # call(('gdalwarp','-overwrite','-s_srs',transform[1],'-t_srs',clone_EPSG,'-te', xmin, ymin, xmax, ymax,'-tr',str(cellsize),str(-cellsize),'-r','mode',soiltype, soiltype_resample)) call(('gdal_translate', '-of', 'PCRaster', '-ot', 'Float32', soiltype_resample, soil_map)) soiltype_work = pcr.readmap(soil_map) pcr.report(pcr.nominal(soiltype_work), soil_map) if clean: wt.DeleteList(glob.glob(os.getcwd() + '\\' + resultdir + '/*.xml'))
vos.netcdf2PCRobjClone(inputDirectory+inputFiles,\ inputVarNames, fulldate, None, cloneMapFileName)) * 0.001 # unit: bcm/year abstraction = pcr.cover(abstraction_volume_30min, 0.0) # use window maximum to be in the conservative side: window_size = 1.0 abstraction = pcr.windowmaximum(abstraction, 1.0) # covering the map with zero pcrValue = pcr.cover(abstraction, 0.0) # unit: m/day # the value should be higher than the previous year value if iYear > staYear: pcrValue = pcr.max(preValue, pcrValue) preValue = pcrValue region_ids = pcr.uniqueid(pcr.boolean(1.0)) region_ids_masked = pcr.ifthen(landmask, region_ids) regional_pumping_limit = pcrValue regional_pumping_limit_masked = pcr.ifthen(landmask, regional_pumping_limit) for iVar in range(0,len(varNames)): var = varNames[iVar] pcrRead = vars()[str(var)] varField = pcr.pcr2numpy(pcrRead, vos.MV) tssNetCDF.writePCR2NetCDF(ncFileName,var,varField,timeStamp,posCnt = index - 1)
def subcatch_stream( ldd, threshold, min_strahler=-999, max_strahler=999, assign_edge=False, assign_existing=False, up_area=None, ): """ (From Deltares Hydrotools) Derive catchments based upon strahler threshold Input: ldd -- pcraster object direction, local drain directions threshold -- integer, strahler threshold, subcatchments ge threshold are derived min_strahler -- integer, minimum strahler threshold of river catchments to return max_strahler -- integer, maximum strahler threshold of river catchments to return assign_unique=False -- if set to True, unassigned connected areas at the edges of the domain are assigned a unique id as well. If set to False, edges are not assigned assign_existing=False == if set to True, unassigned edges are assigned to existing basins with an upstream weighting. If set to False, edges are assigned to unique IDs, or not assigned output: stream_ge -- pcraster object, streams of strahler order ge threshold subcatch -- pcraster object, subcatchments of strahler order ge threshold """ # derive stream order stream = pcr.streamorder(ldd) stream_ge = pcr.ifthen(stream >= threshold, stream) stream_up_sum = pcr.ordinal(pcr.upstream(ldd, pcr.cover(pcr.scalar(stream_ge), 0))) # detect any transfer of strahler order, to a higher strahler order. transition_strahler = pcr.ifthenelse( pcr.downstream(ldd, stream_ge) != stream_ge, pcr.boolean(1), pcr.ifthenelse( pcr.nominal(ldd) == 5, pcr.boolean(1), pcr.ifthenelse( pcr.downstream(ldd, pcr.scalar(stream_up_sum)) > pcr.scalar(stream_ge), pcr.boolean(1), pcr.boolean(0), ), ), ) # make unique ids (write to file) transition_unique = pcr.ordinal(pcr.uniqueid(transition_strahler)) # derive upstream catchment areas (write to file) subcatch = pcr.nominal(pcr.subcatchment(ldd, transition_unique)) if assign_edge: # fill unclassified areas (in pcraster equal to zero) with a unique id, above the maximum id assigned so far unique_edge = pcr.clump(pcr.ifthen(subcatch == 0, pcr.ordinal(0))) subcatch = pcr.ifthenelse( subcatch == 0, pcr.nominal(pcr.mapmaximum(pcr.scalar(subcatch)) + pcr.scalar(unique_edge)), pcr.nominal(subcatch), ) elif assign_existing: # unaccounted areas are added to largest nearest draining basin if up_area is None: up_area = pcr.ifthen( pcr.boolean(pcr.cover(stream_ge, 0)), pcr.accuflux(ldd, 1) ) riverid = pcr.ifthen(pcr.boolean(pcr.cover(stream_ge, 0)), subcatch) friction = 1.0 / pcr.scalar( pcr.spreadzone(pcr.cover(pcr.ordinal(up_area), 0), 0, 0) ) # *(pcr.scalar(ldd)*0+1) delta = pcr.ifthen( pcr.scalar(ldd) >= 0, pcr.ifthen( pcr.cover(subcatch, 0) == 0, pcr.spreadzone(pcr.cover(riverid, 0), 0, friction), ), ) subcatch = pcr.ifthenelse(pcr.boolean(pcr.cover(subcatch, 0)), subcatch, delta) # finally, only keep basins with minimum and maximum river order flowing through them strahler_subcatch = pcr.areamaximum(stream, subcatch) subcatch = pcr.ifthen( pcr.ordinal(strahler_subcatch) >= min_strahler, pcr.ifthen(pcr.ordinal(strahler_subcatch) <= max_strahler, subcatch), ) return stream_ge, pcr.ordinal(subcatch)
def initial(self): """ initial part of the routing module """ maskinfo = MaskInfo.instance() self.var.avgdis = maskinfo.in_zero() self.var.Beta = loadmap('beta') self.var.InvBeta = 1 / self.var.Beta # Inverse of beta for kinematic wave self.var.ChanLength = loadmap('ChanLength').astype(float) self.var.InvChanLength = 1 / self.var.ChanLength # Inverse of channel length [1/m] self.var.NoRoutSteps = int( np.maximum(1, round(self.var.DtSec / self.var.DtSecChannel, 0))) # Number of sub-steps based on value of DtSecChannel, # or 1 if DtSec is smaller than DtSecChannel settings = LisSettings.instance() option = settings.options if option['InitLisflood']: self.var.NoRoutSteps = 1 # InitLisflood is used! # so channel routing step is the same as the general time step self.var.DtRouting = self.var.DtSec / self.var.NoRoutSteps # Corresponding sub-timestep (seconds) self.var.InvDtRouting = 1 / self.var.DtRouting self.var.InvNoRoutSteps = 1 / float(self.var.NoRoutSteps) # inverse for faster calculation inside the dynamic section # -------------------------- LDD self.var.Ldd = lddmask(loadmap('Ldd', pcr=True, lddflag=True), self.var.MaskMap) # Cut ldd to size of MaskMap (NEW, 29/9/2004) # Prevents 'unsound' ldd if MaskMap covers sub-area of ldd # Count (inverse of) upstream area for each pixel # Needed if we want to calculate average values of variables # upstream of gauge locations self.var.UpArea = accuflux(self.var.Ldd, self.var.PixelAreaPcr) # Upstream contributing area for each pixel # Note that you might expext that values of UpArea would be identical to # those of variable CatchArea (see below) at the outflow points. # This is NOT actually the case, because outflow points are shifted 1 # cell in upstream direction in the calculation of CatchArea! self.var.InvUpArea = 1 / self.var.UpArea # Calculate inverse, so we can multiply in dynamic (faster than divide) self.var.IsChannelPcr = boolean(loadmap('Channels', pcr=True)) self.var.IsChannel = np.bool8(compressArray(self.var.IsChannelPcr)) # Identify channel pixels self.var.IsChannelKinematic = self.var.IsChannel.copy() # Identify kinematic wave channel pixels # (identical to IsChannel, unless dynamic wave is used, see below) #self.var.IsStructureKinematic = pcraster.boolean(0) self.var.IsStructureKinematic = np.bool8(maskinfo.in_zero()) # Map that identifies special inflow/outflow structures (reservoirs, lakes) within the # kinematic wave channel routing. Set to (dummy) value of zero modified in reservoir and lake # routines (if those are used) LddChan = lddmask(self.var.Ldd, self.var.IsChannelPcr) # ldd for Channel network self.var.MaskMap = boolean(self.var.Ldd) # Use boolean version of Ldd as calculation mask # (important for correct mass balance check # any water generated outside of Ldd won't reach # channel anyway) self.var.LddToChan = lddrepair( ifthenelse(self.var.IsChannelPcr, 5, self.var.Ldd)) # Routing of runoff (incl. ground water)en AtOutflow = boolean(pit(self.var.Ldd)) # find outlet points... if option['dynamicWave']: IsChannelDynamic = boolean(loadmap('ChannelsDynamic', pcr=True)) # Identify channel pixels where dynamic wave is used self.var.IsChannelKinematic = (self.var.IsChannelPcr == 1) & (IsChannelDynamic == 0) # Identify (update) channel pixels where kinematic wave is used self.var.LddKinematic = lddmask(self.var.Ldd, self.var.IsChannelKinematic) # Ldd for kinematic wave: ends (pit) just before dynamic stretch LddDynamic = lddmask(self.var.Ldd, IsChannelDynamic) # Ldd for dynamic wave # Following statements produce an ldd network that connects the pits in # LddKinematic to the nearest downstream dynamic wave pixel LddToDyn = lddrepair(ifthenelse(IsChannelDynamic, 5, self.var.Ldd)) # Temporary ldd: flow paths end in dynamic pixels PitsKinematic = cover(boolean(pit(self.var.LddKinematic)), 0) # Define start of each flow path at pit on LddKinematic PathKinToDyn = path(LddToDyn, PitsKinematic) # Identify paths that connect pits in LddKinematic to dynamic wave # pixels LddKinToDyn = lddmask(LddToDyn, PathKinToDyn) # Create ldd DynWaveBoundaryCondition = boolean(pit(LddDynamic)) # NEW 12-7-2005 (experimental) # Location of boundary condition dynamic wave self.var.AtLastPoint = (downstream( self.var.Ldd, AtOutflow) == 1) & (AtOutflow != 1) & self.var.IsChannelPcr # NEW 23-6-2005 # Dynamic wave routine gives no outflow out of pits, so we calculate this # one cell upstream (WvD) # (implies that most downstream cell is not taken into account in mass balance # calculations, even if dyn wave is not used) # Only include points that are on a channel (otherwise some small 'micro-catchments' # are included, for which the mass balance cannot be calculated # properly) else: self.var.LddKinematic = LddChan # No dynamic wave, so kinematic ldd equals channel ldd self.var.AtLastPoint = AtOutflow self.var.AtLastPointC = np.bool8( compressArray(self.var.AtLastPoint)) # assign unique identifier to each of them maskinfo = MaskInfo.instance() lddC = compressArray(self.var.LddKinematic) inAr = decompress(np.arange(maskinfo.info.mapC[0], dtype="int32")) # giving a number to each non missing pixel as id self.var.downstruct = (compressArray( downstream(self.var.LddKinematic, inAr))).astype("int32") # each upstream pixel gets the id of the downstream pixel self.var.downstruct[lddC == 5] = maskinfo.info.mapC[0] # all pits gets a high number #d3=np.bincount(self.var.down, weights=loadmap('AvgDis'))[:-1] # upstream function in numpy OutflowPoints = nominal(uniqueid(self.var.AtLastPoint)) # and assign unique identifier to each of them self.var.Catchments = (compressArray( catchment(self.var.Ldd, OutflowPoints))).astype(np.int32) CatchArea = np.bincount( self.var.Catchments, weights=self.var.PixelArea)[self.var.Catchments] #CatchArea = CatchArea[self.var.Catchments] # define catchment for each outflow point #CatchArea = areatotal(self.var.PixelArea, self.var.Catchments) # Compute area of each catchment [m2] # Note: in earlier versions this was calculated using the "areaarea" function, # changed to "areatotal" in order to enable handling of grids with spatially # variable cell areas (e.g. lat/lon grids) self.var.InvCatchArea = 1 / CatchArea # inverse of catchment area [1/m2] # ************************************************************ # ***** CHANNEL GEOMETRY ************************************ # ************************************************************ self.var.ChanGrad = np.maximum(loadmap('ChanGrad'), loadmap('ChanGradMin')) # avoid calculation of Alpha using ChanGrad=0: this creates MV! self.var.CalChanMan = loadmap('CalChanMan') self.var.ChanMan = self.var.CalChanMan * loadmap('ChanMan') # Manning's n is multiplied by ChanManCal # enables calibration for peak timing self.var.ChanBottomWidth = loadmap('ChanBottomWidth') ChanDepthThreshold = loadmap('ChanDepthThreshold') ChanSdXdY = loadmap('ChanSdXdY') self.var.ChanUpperWidth = self.var.ChanBottomWidth + 2 * ChanSdXdY * ChanDepthThreshold # Channel upper width [m] self.var.TotalCrossSectionAreaBankFull = 0.5 * \ ChanDepthThreshold * (self.var.ChanUpperWidth + self.var.ChanBottomWidth) # Area (sq m) of bank full discharge cross section [m2] # (trapezoid area equation) TotalCrossSectionAreaHalfBankFull = 0.5 * self.var.TotalCrossSectionAreaBankFull # Cross-sectional area at half bankfull [m2] # This can be used to initialise channel flow (see below) TotalCrossSectionAreaInitValue = loadmap( 'TotalCrossSectionAreaInitValue') self.var.TotalCrossSectionArea = np.where( TotalCrossSectionAreaInitValue == -9999, TotalCrossSectionAreaHalfBankFull, TotalCrossSectionAreaInitValue) # Total cross-sectional area [m2]: if initial value in binding equals -9999 the value at half bankfull is used, # otherwise TotalCrossSectionAreaInitValue (typically end map from previous simulation) if option['SplitRouting']: # in_zero = maskinfo.in_zero() CrossSection2AreaInitValue = loadmap('CrossSection2AreaInitValue') self.var.CrossSection2Area = np.where( CrossSection2AreaInitValue == -9999, maskinfo.in_zero(), CrossSection2AreaInitValue) # cross-sectional area [m2] for 2nd line of routing: if initial value in binding equals -9999 the value is set to 0 # otherwise CrossSection2AreaInitValue (typically end map from previous simulation) PrevSideflowInitValue = loadmap('PrevSideflowInitValue') self.var.Sideflow1Chan = np.where(PrevSideflowInitValue == -9999, maskinfo.in_zero(), PrevSideflowInitValue) # sideflow from previous run for 1st line of routing: if initial value in binding equals -9999 the value is set to 0 # otherwise PrevSideflowInitValue (typically end map from previous simulation) # ************************************************************ # ***** CHANNEL ALPHA (KIN. WAVE)***************************** # ************************************************************ # Following calculations are needed to calculate Alpha parameter in kinematic # wave. Alpha currently fixed at half of bankful depth (this may change in # future versions!) ChanWaterDepthAlpha = np.where(self.var.IsChannel, 0.5 * ChanDepthThreshold, 0.0) # Reference water depth for calculation of Alpha: half of bankfull self.var.ChanWettedPerimeterAlpha = self.var.ChanBottomWidth + 2 * \ np.sqrt(np.square(ChanWaterDepthAlpha) + np.square(ChanWaterDepthAlpha * ChanSdXdY)) # Channel wetted perimeter [m](Pythagoras) AlpTermChan = (self.var.ChanMan / (np.sqrt(self.var.ChanGrad)))**self.var.Beta self.var.AlpPow = 2.0 / 3.0 * self.var.Beta self.var.ChannelAlpha = ( AlpTermChan * (self.var.ChanWettedPerimeterAlpha**self.var.AlpPow)).astype(float) self.var.InvChannelAlpha = 1 / self.var.ChannelAlpha # ChannelAlpha for kinematic wave # ************************************************************ # ***** CHANNEL INITIAL DISCHARGE **************************** # ************************************************************ self.var.ChanM3 = self.var.TotalCrossSectionArea * self.var.ChanLength # channel water volume [m3] self.var.ChanIniM3 = self.var.ChanM3.copy() self.var.ChanM3Kin = self.var.ChanIniM3.copy().astype(float) # Initialise water volume in kinematic wave channels [m3] self.var.ChanQKin = np.where(self.var.ChannelAlpha > 0, (self.var.TotalCrossSectionArea / self.var.ChannelAlpha)**self.var.InvBeta, 0).astype(float) # Initialise discharge at kinematic wave pixels (note that InvBeta is # simply 1/beta, computational efficiency!) self.var.CumQ = maskinfo.in_zero() # ininialise sum of discharge to calculate average # ************************************************************ # ***** CHANNEL INITIAL DYNAMIC WAVE ************************* # ************************************************************ if option['dynamicWave']: pass # TODO !!!!!!!!!!!!!!!!!!!! # lookchan = lookupstate(TabCrossSections, ChanCrossSections, ChanBottomLevel, self.var.ChanLength, # DynWaveConstantHeadBoundary + ChanBottomLevel) # ChanIniM3 = ifthenelse(AtOutflow, lookchan, ChanIniM3) # Correct ChanIniM3 for constant head boundary in pit (only if # dynamic wave is used) # ChanM3Dyn = ChanIniM3 # Set volume of water in dynamic wave channel to initial value # (note that initial condition is expressed as a state in [m3] for the dynamic wave, # and as a rate [m3/s] for the kinematic wave (a bit confusing) # Estimate number of iterations needed in first time step (based on Courant criterium) # TO DO !!!!!!!!!!!!!!!!!!!! # Potential = lookuppotential( # TabCrossSections, ChanCrossSections, ChanBottomLevel, self.var.ChanLength, ChanM3Dyn) # Potential # WaterLevelDyn = Potential - ChanBottomLevel # Water level [m above bottom level) # WaveCelerityDyn = pcraster.sqrt(9.81 * WaterLevelDyn) # Dynamic wave celerity [m/s] # CourantDynamic = self.var.DtSec * \ # (WaveCelerityDyn + 2) / self.var.ChanLength # Courant number for dynamic wave # We don't know the water velocity at this time so # we just guess it's 2 m/s (Odra tests show that flow velocity # is typically much lower than wave celerity, and 2 m/s is quite # high already so this gives a pretty conservative/safe estimate # for DynWaveIterations) # DynWaveIterationsTemp = max( # 1, roundup(CourantDynamic / CourantDynamicCrit)) # DynWaveIterations = ordinal(mapmaximum(DynWaveIterationsTemp)) # Number of sub-steps needed for required numerical # accuracy. Always greater than or equal to 1 # (otherwise division by zero!) # TEST # If polder option is used, we need an estimate of the initial channel discharge, but we don't know this # for the dynamic wave pixels (since only initial state is known)! Try if this works (dyn wave flux based on zero inflow 1 iteration) # Note that resulting ChanQ is ONLY used in the polder routine!!! # Since we need instantaneous estimate at start of time step, a # ChanQM3Dyn is calculated for one single one-second time step!!! # ChanQDyn = dynwaveflux(TabCrossSections, # ChanCrossSections, # LddDynamic, # ChanIniM3, # 0.0, # ChanBottomLevel, # self.var.ChanMan, # self.var.ChanLength, # 1, # 1, # DynWaveBoundaryCondition) # Compute volume and discharge in channel after dynamic wave # ChanM3Dyn in [cu m] # ChanQDyn in [cu m / s] # self.var.ChanQ = ifthenelse( # IsChannelDynamic, ChanQDyn, self.var.ChanQKin) # Channel discharge: combine results of kinematic and dynamic wave else: # ***** NO DYNAMIC WAVE ************************* # Dummy code if dynamic wave is not used, in which case ChanQ equals ChanQKin # (needed only for polder routine) PrevDischarge = loadmap('PrevDischarge') self.var.ChanQ = np.where(PrevDischarge == -9999, self.var.ChanQKin, PrevDischarge) # initialise channel discharge: cold start: equal to ChanQKin # [m3/s] # Initialising cumulative output variables # These are all needed to compute the cumulative mass balance error self.var.DischargeM3Out = maskinfo.in_zero() # cumulative discharge at outlet [m3] self.var.TotalQInM3 = maskinfo.in_zero() # cumulative inflow from inflow hydrographs [m3] #self.var.sumDis = maskinfo.in_zero() self.var.sumDis = maskinfo.in_zero() self.var.sumIn = maskinfo.in_zero()
ldd = pcr.cover(ldd, ldd_select) pcr.report(ldd, resultdir + ldd_map) ds.Destroy() ''' report stream order, river and dem ''' streamorder = pcr.ordinal(pcr.streamorder(ldd)) river = pcr.ifthen(streamorder >= pcr.ordinal(minorder), pcr.boolean(1)) mindem = int(np.min(pcr.pcr2numpy(pcr.ordinal(dem_resample_map), 9999999))) dem_resample_map = pcr.cover(dem_resample_map, pcr.scalar(river) * 0 + mindem) pcr.report(dem_resample_map, resultdir + dem_map) pcr.report(streamorder, resultdir + streamorder_map) pcr.report(river, resultdir + river_map) ''' deal with your catchments ''' if gaugeshp == None: print 'No gauges defined, using outlets instead' gauges = pcr.ordinal( pcr.uniqueid( pcr.boolean(pcr.ifthen(pcr.scalar(ldd) == 5, pcr.boolean(1))))) pcr.report(gauges, resultdir + gauges_map) # ds = ogr.Open(gaugeshp) # file_att = os.path.splitext(os.path.basename(gaugeshp))[0] # lyr = ds.GetLayerByName(file_att) # spatialref = lyr.GetSpatialRef() ## if not spatialref == None: ## srs = osr.SpatialReference() ## srs.ImportFromWkt(spatialref.ExportToWkt()) ## srs.AutoIdentifyEPSG() ## gaugeshp_EPSG = 'EPSG:'+srs.GetAttrValue("AUTHORITY",1) ## spatialref == None # #else: # gaugeshp_EPSG = clone_EPSG # print 'No projection defined for ' + file_att + '.shp' # print 'Assumed to be the same as model projection (' + clone_EPSG + ')'
landmask = pcr.defined(pcr.readmap(clone_map)) # class map file name: #~ class_map_file_name = "/home/sutan101/data/aqueduct_gis_layers/aqueduct_shp_from_marta/Aqueduct_States.map" #~ class_map_file_name = "/home/sutan101/data/aqueduct_gis_layers/aqueduct_shp_from_marta/Aqueduct_GDBD.map" #~ class_map_file_name = "/home/sutan101/data/processing_whymap/version_19september2014/major_aquifer_30min.extended.map" #~ class_map_file_name = "/home/sutan101/data/processing_whymap/version_19september2014/major_aquifer_30min.map" class_map_file_name = str(sys.argv[2]) class_map_default_folder = "/home/sutan101/data/aqueduct_gis_layers/aqueduct_shp_from_marta/" if class_map_file_name == "state": class_map_file_name = class_map_default_folder + "/Aqueduct_States.map" if class_map_file_name == "drainage_unit": class_map_file_name = class_map_default_folder + "/Aqueduct_GDBD.map" if class_map_file_name == "aquifer": class_map_file_name = class_map_default_folder + "/why_wgs1984_BUENO.map" if class_map_file_name == "country": class_map_file_name = "/home/sutan101/data/country_shp_from_tianyi/World_Polys_High.map" # reading the class map class_map = pcr.nominal(pcr.uniqueid(landmask)) if class_map_file_name != "pixel": class_map = vos.readPCRmapClone(class_map_file_name, clone_map, tmp_directory, None, False, None, True, False) class_map = pcr.ifthen(pcr.scalar(class_map) > 0.0, pcr.nominal(class_map)) # time selection start_year = int(sys.argv[3]) end_year = int(sys.argv[4]) # cell_area (unit: m2) cell_area = pcr.readmap("/data/hydroworld/PCRGLOBWB20/input5min/routing/cellsize05min.correct.map") segment_cell_area = pcr.areatotal(cell_area, class_map) # extent of aquifer/sedimentary basins: sedimentary_basin = pcr.cover(pcr.scalar(pcr.readmap("/home/sutan101/data/sed_extent/sed_extent.map")), 0.0) cell_area = sedimentary_basin * cell_area
basin_map = pcr.cover(basin_map, pcr.windowmajority(basin_map, 0.5)) basin_map = pcr.cover(basin_map, pcr.windowmajority(basin_map, 0.5)) basin_map = pcr.cover(basin_map, pcr.windowmajority(basin_map, 0.5)) basin_map = pcr.cover(basin_map, pcr.windowmajority(basin_map, 1.0)) basin_map = pcr.cover(basin_map, pcr.windowmajority(basin_map, 1.5)) basin_map = pcr.ifthen(landmask, basin_map) #~ pcr.aguila(basin_map) msg = "Redefining the basin map (so that it is consistent with the ldd map used in PCR-GLOBWB):" logger.info(msg) # - calculate the upstream area of every pixel: upstream_area = pcr.catchmenttotal(cell_area, ldd) # - calculate the catchment area of every basin: upstream_area_maximum = pcr.areamaximum(upstream_area, basin_map) # - identify the outlet of every basin (in order to rederive the basin so that it is consistent with the ldd) outlet = pcr.nominal(pcr.uniqueid(pcr.ifthen(upstream_area == upstream_area_maximum, pcr.boolean(1.0)))) # - ignoring outlets with small upstream areas threshold = 50. * 1000. * 1000. # unit: m2 outlet = pcr.ifthen(upstream_area_maximum > threshold, outlet) #~ pcr.aguila(outlet) outlet = pcr.cover(outlet, pcr.nominal(0.0)) # - recalculate the basin basin_map = pcr.nominal(pcr.subcatchment(ldd, outlet)) basin_map = pcr.clump(basin_map) basin_map = pcr.ifthen(landmask, basin_map) pcr.report(basin_map , "basin_map.map") #~ pcr.aguila(basin_map) # - calculate the basin area basin_area = pcr.areatotal(cell_area, basin_map) pcr.report(basin_area, "basin_area.map") #~ pcr.aguila(basin_area)
def main(): # output folder (and tmp folder) clean_out_folder = True if os.path.exists(out_folder): if clean_out_folder: shutil.rmtree(out_folder) os.makedirs(out_folder) else: os.makedirs(out_folder) os.chdir(out_folder) os.system("pwd") # set the clone map print("set the clone") pcr.setclone(global_ldd_30min_inp_file) # define the landmask print("define the landmask") # - based on the 30min input landmask_30min = define_landmask(input_file = global_landmask_30min_file,\ clone_map_file = global_ldd_30min_inp_file,\ output_map_file = "landmask_30min_only.map") # - based on the 05min input landmask_05min = define_landmask(input_file = global_landmask_05min_file,\ clone_map_file = global_ldd_30min_inp_file,\ output_map_file = "landmask_05min_only.map") # - based on the 06min input landmask_06min = define_landmask(input_file = global_landmask_06min_file,\ clone_map_file = global_ldd_30min_inp_file,\ output_map_file = "landmask_06min_only.map") # - based on the 30sec input landmask_30sec = define_landmask(input_file = global_landmask_30sec_file,\ clone_map_file = global_ldd_30min_inp_file,\ output_map_file = "landmask_30sec_only.map") # - based on the 30sec input landmask_03sec = define_landmask(input_file = global_landmask_03sec_file,\ clone_map_file = global_ldd_30min_inp_file,\ output_map_file = "landmask_03sec_only.map") # # - merge all landmasks landmask = pcr.cover(landmask_30min, landmask_05min, landmask_06min, landmask_30sec, landmask_03sec) pcr.report(landmask, "global_landmask_extended_30min.map") # ~ pcr.aguila(landmask) # extend ldd print("extend/define the ldd") ldd_map = pcr.readmap(global_ldd_30min_inp_file) ldd_map = pcr.ifthen(landmask, pcr.cover(ldd_map, pcr.ldd(5))) pcr.report(ldd_map, "global_ldd_extended_30min.map") # ~ pcr.aguila(ldd_map) # catchment map and size catchment_map = pcr.catchment(ldd_map, pcr.pit(ldd_map)) catchment_size = pcr.areatotal(pcr.spatial(pcr.scalar(1.0)), catchment_map) # ~ pcr.aguila(catchment_size) # identify small islands print("identify small islands") # - maps of islands smaller than 15000 cells (at half arc degree resolution) island_map = pcr.ifthen(landmask, pcr.clump(pcr.defined(ldd_map))) island_size = pcr.areatotal(pcr.spatial(pcr.scalar(1.0)), island_map) island_map = pcr.ifthen(island_size < 15000., island_map) # ~ # - use catchments (instead of islands) # ~ island_map = catchment_map # ~ island_size = catchment_size # ~ island_map = pcr.ifthen(island_size < 10000., island_map) # - sort from the largest island # -- take one cell per island as a representative island_map_rep_size = pcr.ifthen( pcr.areaorder(island_size, island_map) == 1.0, island_size) # -- sort from the largest island island_map_rep_ids = pcr.areaorder( island_map_rep_size * -1.00, pcr.ifthen(pcr.defined(island_map_rep_size), pcr.nominal(1.0))) # -- map of smaller islands, sorted from the largest one island_map = pcr.areamajority(pcr.nominal(island_map_rep_ids), island_map) # identify the biggest island for every group of small islands within a certain window (arcdeg cells) print("the biggest island for every group of small islands") large_island_map = pcr.ifthen( pcr.scalar(island_map) == pcr.windowminimum(pcr.scalar(island_map), 15.), island_map) # ~ pcr.aguila(large_island_map) # identify big catchments print("identify large catchments") catchment_map = pcr.catchment(ldd_map, pcr.pit(ldd_map)) catchment_size = pcr.areatotal(pcr.spatial(pcr.scalar(1.0)), catchment_map) # ~ # - identify all large catchments with size >= 50 cells (at the resolution of 30 arcmin) = 50 x (50^2) km2 = 125000 km2 # ~ large_catchment_map = pcr.ifthen(catchment_size >= 50, catchment_map) # ~ # - identify all large catchments with size >= 10 cells (at the resolution of 30 arcmin) # ~ large_catchment_map = pcr.ifthen(catchment_size >= 10, catchment_map) # ~ # - identify all large catchments with size >= 5 cells (at the resolution of 30 arcmin) # ~ large_catchment_map = pcr.ifthen(catchment_size >= 5, catchment_map) # ~ # - identify all large catchments with size >= 20 cells (at the resolution of 30 arcmin) # ~ large_catchment_map = pcr.ifthen(catchment_size >= 20, catchment_map) # - identify all large catchments with size >= 25 cells (at the resolution of 30 arcmin) large_catchment_map = pcr.ifthen(catchment_size >= 25, catchment_map) # - give the codes that are different than islands large_catchment_map = pcr.nominal( pcr.scalar(large_catchment_map) + 10. * vos.getMinMaxMean(pcr.scalar(large_island_map))[1]) # merge biggest islands and big catchments print("merge large catchments and islands") large_catchment_and_island_map = pcr.cover(large_catchment_map, large_island_map) # ~ large_catchment_and_island_map = pcr.cover(large_island_map, large_catchment_map) large_catchment_and_island_map_size = pcr.areatotal( pcr.spatial(pcr.scalar(1.0)), large_catchment_and_island_map) # - sort from the largest one # -- take one cell per island as a representative large_catchment_and_island_map_rep_size = pcr.ifthen( pcr.areaorder(large_catchment_and_island_map_size, large_catchment_and_island_map) == 1.0, large_catchment_and_island_map_size) # -- sort from the largest large_catchment_and_island_map_rep_ids = pcr.areaorder( large_catchment_and_island_map_rep_size * -1.00, pcr.ifthen(pcr.defined(large_catchment_and_island_map_rep_size), pcr.nominal(1.0))) # -- map of largest catchments and islands, sorted from the largest one large_catchment_and_island_map = pcr.areamajority( pcr.nominal(large_catchment_and_island_map_rep_ids), large_catchment_and_island_map) # ~ pcr.report(large_catchment_and_island_map, "large_catchments_and_islands.map") # ~ # perform cdo fillmiss2 in order to merge the small catchments to the nearest large catchments # ~ print("spatial interpolation/extrapolation using cdo fillmiss2 to get initial subdomains") # ~ cmd = "gdal_translate -of NETCDF large_catchments_and_islands.map large_catchments_and_islands.nc" # ~ print(cmd); os.system(cmd) # ~ cmd = "cdo fillmiss2 large_catchments_and_islands.nc large_catchments_and_islands_filled.nc" # ~ print(cmd); os.system(cmd) # ~ cmd = "gdal_translate -of PCRaster large_catchments_and_islands_filled.nc large_catchments_and_islands_filled.map" # ~ print(cmd); os.system(cmd) # ~ cmd = "mapattr -c " + global_ldd_30min_inp_file + " " + "large_catchments_and_islands_filled.map" # ~ print(cmd); os.system(cmd) # ~ # - initial subdomains # ~ subdomains_initial = pcr.nominal(pcr.readmap("large_catchments_and_islands_filled.map")) # ~ subdomains_initial = pcr.areamajority(subdomains_initial, catchment_map) # ~ pcr.aguila(subdomains_initial) # spatial interpolation/extrapolation in order to merge the small catchments to the nearest large catchments print("spatial interpolation/extrapolation to get initial subdomains") field = large_catchment_and_island_map cellID = pcr.nominal(pcr.uniqueid(pcr.defined(field))) zoneID = pcr.spreadzone(cellID, 0, 1) field = pcr.areamajority(field, zoneID) subdomains_initial = field subdomains_initial = pcr.areamajority(subdomains_initial, catchment_map) pcr.aguila(subdomains_initial) pcr.report(subdomains_initial, "global_subdomains_30min_initial.map") print(str(int(vos.getMinMaxMean(pcr.scalar(subdomains_initial))[0]))) print(str(int(vos.getMinMaxMean(pcr.scalar(subdomains_initial))[1]))) # ~ print(str(int(vos.getMinMaxMean(pcr.scalar(subdomains_initial_clump))[0]))) # ~ print(str(int(vos.getMinMaxMean(pcr.scalar(subdomains_initial_clump))[1]))) print("Checking all subdomains, avoid too large subdomains") num_of_masks = int(vos.getMinMaxMean(pcr.scalar(subdomains_initial))[1]) # clone code that will be assigned assigned_number = 0 subdomains_final = pcr.ifthen( pcr.scalar(subdomains_initial) < -7777, pcr.nominal(0)) for nr in range(1, num_of_masks + 1, 1): msg = "Processing the landmask %s" % (str(nr)) print(msg) mask_selected_boolean = pcr.ifthen(subdomains_initial == nr, pcr.boolean(1.0)) # ~ if nr == 1: pcr.aguila(mask_selected_boolean) xmin, ymin, xmax, ymax = boundingBox(mask_selected_boolean) area_in_degree2 = (xmax - xmin) * (ymax - ymin) # ~ print(str(area_in_degree2)) # check whether the size of bounding box is ok # - initial check value check_ok = True reference_area_in_degree2 = 2500. if area_in_degree2 > 1.50 * reference_area_in_degree2: check_ok = False if (xmax - xmin) > 10 * (ymax - ymin): check_ok = False if check_ok == True: msg = "Clump is not needed." msg = "\n\n" + str(msg) + "\n\n" print(msg) # assign the clone code assigned_number = assigned_number + 1 # update global landmask for river and land mask_selected_nominal = pcr.ifthen(mask_selected_boolean, pcr.nominal(assigned_number)) subdomains_final = pcr.cover(subdomains_final, mask_selected_nominal) if check_ok == False: msg = "Clump is needed." msg = "\n\n" + str(msg) + "\n\n" print(msg) # make clump clump_ids = pcr.nominal(pcr.clump(mask_selected_boolean)) # merge clumps that are close together clump_ids_window_majority = pcr.windowmajority(clump_ids, 10.0) clump_ids = pcr.areamajority(clump_ids_window_majority, clump_ids) # ~ pcr.aguila(clump_ids) # minimimum and maximum values min_clump_id = int( pcr.cellvalue(pcr.mapminimum(pcr.scalar(clump_ids)), 1)[0]) max_clump_id = int( pcr.cellvalue(pcr.mapmaximum(pcr.scalar(clump_ids)), 1)[0]) for clump_id in range(min_clump_id, max_clump_id + 1, 1): msg = "Processing the clump %s of %s from the landmask %s" % ( str(clump_id), str(max_clump_id), str(nr)) msg = "\n\n" + str(msg) + "\n\n" print(msg) # identify mask based on the clump mask_selected_boolean_from_clump = pcr.ifthen( clump_ids == pcr.nominal(clump_id), mask_selected_boolean) mask_selected_boolean_from_clump = pcr.ifthen( mask_selected_boolean_from_clump, mask_selected_boolean_from_clump) # check whether the clump is empty check_mask_selected_boolean_from_clump = pcr.ifthen( mask_selected_boolean, mask_selected_boolean_from_clump) check_if_empty = float( pcr.cellvalue( pcr.mapmaximum( pcr.scalar( pcr.defined( check_mask_selected_boolean_from_clump))), 1)[0]) if check_if_empty == 0.0: msg = "Map is empty !" msg = "\n\n" + str(msg) + "\n\n" print(msg) else: msg = "Map is NOT empty !" msg = "\n\n" + str(msg) + "\n\n" print(msg) # assign the clone code assigned_number = assigned_number + 1 # update global landmask for river and land mask_selected_nominal = pcr.ifthen( mask_selected_boolean_from_clump, pcr.nominal(assigned_number)) subdomains_final = pcr.cover(subdomains_final, mask_selected_nominal) # ~ # kill all aguila processes if exist # ~ os.system('killall aguila') pcr.aguila(subdomains_final) print("") print("") print("") print("The subdomain map is READY.") pcr.report(subdomains_final, "global_subdomains_30min_final.map") num_of_masks = int(vos.getMinMaxMean(pcr.scalar(subdomains_final))[1]) print(num_of_masks) print("") print("") print("") for nr in range(1, num_of_masks + 1, 1): mask_selected_boolean = pcr.ifthen(subdomains_final == nr, pcr.boolean(1.0)) xmin, ymin, xmax, ymax = boundingBox(mask_selected_boolean) area_in_degree2 = (xmax - xmin) * (ymax - ymin) print( str(nr) + " ; " + str(area_in_degree2) + " ; " + str((xmax - xmin)) + " ; " + str((ymax - ymin))) print("") print("") print("") print("Number of subdomains: " + str(num_of_masks)) print("") print("") print("") # spatial extrapolation in order to cover the entire map print("spatial interpolation/extrapolation to cover the entire map") field = subdomains_final cellID = pcr.nominal(pcr.uniqueid(pcr.defined(field))) zoneID = pcr.spreadzone(cellID, 0, 1) field = pcr.areamajority(field, zoneID) subdomains_final_filled = field pcr.aguila(subdomains_final_filled) pcr.report(subdomains_final_filled, "global_subdomains_30min_final_filled.map")