data_pca = pcreode.PCA(data_raw) data_pca.get_pca() pca_test_data = data_pca.pca_set_components(5) pca_reduced_data = data_pca.pca_set_components(3) dens = pcreode.Density(pca_reduced_data) density_1 = dens.get_density(radius=1.0) noise = 8.0 target = 50.0 file_path = './myeloid_w_ids/' #pdb.set_trace() out_graph, out_ids = pcreode.pCreode(data=pca_reduced_data, density=density_1, noise=noise, target=target, file_path=file_path, num_runs=10) pcreode.pCreode_Scoring(data=pca_reduced_data, file_path=file_path, num_graphs=10) seed = 123 gid = 9 #Plot graph pcreode.plot_save_graph(seed=seed, file_path=file_path, graph_id=gid, data=pca_reduced_data,
pca_reduced_data = data_pca.pca_set_components(min(params["n_pca_components"],expression.shape[1])) # calculate density dens = pcreode.Density(pca_reduced_data) best_guess = dens.radius_best_guess() density = dens.get_density(radius = best_guess, mute=True) # get downsampling parameters noise, target = pcreode.get_thresholds( pca_reduced_data) # run pCreode out_graph, out_ids = pcreode.pCreode( data = pca_reduced_data, density = density, noise = noise, target = target, file_path = "/ti/workspace/.", num_runs = params["num_runs"], mute=True ) # score graphs, returns a vector of ranks by similarity graph ranks = pcreode.pCreode_Scoring(data = pca_reduced_data, file_path = "/ti/workspace/.", num_graphs = params["num_runs"], mute=True) # select most representative graph gid = graph_ranks[0] # extract cell graph # Wrapper's note: This is actually a cluster graph and a grouping, but none of the objects contain this grouping # the only thing that is available is a cell graph of only a subset of cells # so we use this cell graph as milestone network, and then project all cells onto this analysis = pcreode.Analysis(
data_pca.get_pca() pca_reduced_data = data_pca.pca_set_components(params["n_pca_components"]) # calculate density dens = pcreode.Density(pca_reduced_data) density = dens.get_density(radius=params["radius"]) # downsample downed, downed_ind = pcreode.Down_Sample(pca_reduced_data, density, params["noise"], params["target"]) # run pCreode out_graph, out_ids = pcreode.pCreode(data=pca_reduced_data, density=density, noise=params["noise"], target=params["target"], file_path="/.", num_runs=params["num_runs"]) # score graphs # Wrapper's note: There is currently no way of extracting the best graph ordering, even though it is printed. Will select random graph. pcreode.pCreode_Scoring(data=pca_reduced_data, file_path="/.", num_graphs=params["num_runs"]) gid = np.random.choice(range(params["num_runs"]), 1)[0] # extract cell graph # Wrapper's note: This is actually a cluster graph and a grouping, but none of the objects contain this grouping # the only thing that is available is a cell graph of only a subset of cells # so we use this cell graph as milestone network, and then project all cells onto this