Exemplo n.º 1
0
 def __init__(self, dcdfile, pdbfile, selection=None, verbose=False):
     self.file = dcdfile
     self.verbose = verbose
     self.selectDict = {
         None: None,
         "all": None,
         "bb": ['N', 'CA', 'C', 'O'],
         "backbone": ['N', 'CA', 'C', 'O'],
         "ca": ['CA'],
         "trace": ['CA']
     }
     self.sel = selection if hasattr(selection,
                                     "pop") else self.selectDict[selection]
     if hasattr(pdbfile, "pdbfile"):
         self.pdbfile = pdbfile
     else:
         self.pdbfile = pdbReader.PdbReader(
             pdbfile if hasattr(pdbfile, "read") else open(pdbfile, 'r'))
     self.array = None
     self.mean = None
     self.covariance = None
     self.correlation = None
     self.indices = self.pdbfile.getIndices(self.sel)
     self.natom = len(self.indices)
     self.nframe = 0
     self.header = {}
     self.load()
Exemplo n.º 2
0
 def move(self, eigenvalue, eigenvector, pdbFileName, clusterVarComparison=None, outPdbFile='move.pdb', append=False, modelNumber=0, continuousScale=False, ca = True, bb = False):
  pdbFile = open(pdbFileName)
  pdbR = pdbReader.PdbReader(pdbFile)
  if clusterVarComparison is None:
    p = abs(eigenvalue*eigenvector)
  else:
    cl1,cl2,var=clusterVarComparison
#    print var.shape,eigenvector.shape
    c = (1.*(eigenvector == cl1)+1.*(eigenvector == cl2))
    p = var* (numpy.array([c,c,c]).transpose())
  pdbFile = open(pdbFileName)
  pdbW = pdbWriter.PdbWriter(pdbFile)
  pdbW.alterCoordinates(p, outPdbFile, append=append, modelNumber=modelNumber, ca = ca, bb = bb)
Exemplo n.º 3
0
    def projection(self,
                   eigenvalue,
                   eigenvector,
                   pdbFileName,
                   clusterVarComparison=None,
                   outPdbFile='projection.pdb',
                   append=False,
                   modelNumber=0,
                   continuousScale=False,
                   ca=True,
                   bb=False):
        pdbFile = open(pdbFileName)
        pdbR = pdbReader.PdbReader(pdbFile)
        if clusterVarComparison is None:
            p = abs(eigenvalue * eigenvector)
        else:
            cl1, cl2, var = clusterVarComparison
            #    print var.shape,eigenvector.shape
            p = var * ((1. * (eigenvector == cl1) - 1. * (eigenvector == cl2)))
        pdbFile = open(pdbFileName)
        pdbW = pdbWriter.PdbWriter(pdbFile)
        pdbW.addBFactor(p,
                        outPdbFile,
                        append=append,
                        modelNumber=modelNumber,
                        ca=ca,
                        bb=bb)
        pymolScript = open(outPdbFile.replace('.pdb', '.pml'), 'w')
        max = numpy.max(eigenvector)
        if not continuousScale:
            pymolScript.write("""
load %s
hide everything
show cartoon
spectrum b, minimum=0, maximum=%s
   """ % (outPdbFile, max))
        else:
            pymolScript.write("""
load %s
hide everything
show cartoon
spectrum b, blue_white_red, minimum=-1, maximum=1
alter all, b=str(abs(b))
cartoon putty
unset cartoon_smooth_loops
unset cartoon_flat_sheets
   """ % (outPdbFile))
        pymolScript.close()
Exemplo n.º 4
0
    def write3Dcorr(self,
                    matrix,
                    pdbFileName,
                    outFileName='corrCoords.txt',
                    threshold=0.0,
                    anticorr=True):
        mm = matriceManipulation.matrix(matrix)
        matrix = mm.symmetryZeros()

        def sorter(matrix, anticorr):
            l = numpy.ravel(matrix)
            sl = numpy.sort(l)
            lsl = list(sl)
            if not anticorr:
                lsl.reverse()
            return lsl

        def replace(pn, matrix):
            """
   pn = +1|-1 
   """
            for i in range(numpy.shape(matrix)[0]):
                for j in range(numpy.shape(matrix)[1]):
                    e = matrix[i, j]
                    if pn * e > 0:
                        matrix[i, j] = 0
            return matrix

        pdbFile = open(pdbFileName)
        pdbR = pdbReader.PdbReader(pdbFile)
        caCoords = pdbR.getCAcoord()
        resSeqs = pdbR.getResSeqs()
        if anticorr == True:
            matrix = replace(1, matrix)
        else:
            matrix = replace(-1, matrix)
        lCorrSorted = sorter(matrix, anticorr)

        outFile = open(outFileName, 'w')
        outFile.write('Sorted Ca coordinates from the most correlated\n')
        outFile.write('resSeq1'.rjust(10) + 'resSeq2'.rjust(10) +
                      'Pearson'.rjust(10) + 'x1'.rjust(10) + 'y1'.rjust(10) +
                      'z1'.rjust(10) + 'x2'.rjust(10) + 'y2'.rjust(10) +
                      'z2'.rjust(10) + '\n')
        for e in lCorrSorted:
            if abs(e) > abs(threshold):
                ij = numpy.where(matrix == e)
                jValues = itertools.chain(ij[1])
                for i in ij[0]:
                    j = jValues.next()
                    iCoord = caCoords[i]
                    jCoord = caCoords[j]
                    outFile.write(('%s' % resSeqs[i]).rjust(10) +
                                  ('%s' % resSeqs[j]).rjust(10) +
                                  ('%.3f' % e).rjust(10) +
                                  ('%.3f' % iCoord[0]).rjust(10) +
                                  ('%.3f' % iCoord[1]).rjust(10) +
                                  ('%.3f' % iCoord[2]).rjust(10) +
                                  ('%.3f' % jCoord[0]).rjust(10) +
                                  ('%.3f' % jCoord[1]).rjust(10) +
                                  ('%.3f' % jCoord[2]).rjust(10) + '\n')
            else:
                break