Exemplo n.º 1
0
def reschedule_stream_plan(evaluations,
                           target_facts,
                           domain,
                           stream_results,
                           unique_binding=False,
                           unsatisfiable=False,
                           max_effort=INF,
                           planner=RESCHEDULE_PLANNER,
                           debug=False):
    # TODO: search in space of partially ordered plans
    # TODO: constrain selection order to be alphabetical?
    domain.actions[:], stream_result_from_name = get_stream_actions(
        stream_results, unique_binding=unique_binding)
    goal_expression = And(*target_facts)
    if unsatisfiable:  # TODO: ensure that the copy hasn't harmed anything
        goal_expression = add_unsatisfiable_to_goal(domain, goal_expression)
    reschedule_problem = get_problem(evaluations,
                                     goal_expression,
                                     domain,
                                     unit_costs=False)
    reschedule_task = task_from_domain_problem(domain, reschedule_problem)
    #reschedule_task.axioms = [] # TODO: ensure that the constants are added in the event that axioms are needed?
    sas_task = sas_from_pddl(reschedule_task)
    stream_names, effort = solve_from_task(sas_task,
                                           planner=planner,
                                           max_planner_time=10,
                                           max_cost=max_effort,
                                           debug=debug)
    if stream_names is None:
        return None
    stream_plan = [stream_result_from_name[name] for name, _ in stream_names]
    return stream_plan
Exemplo n.º 2
0
def plan_streams(evaluations, goal_expression, domain, all_results, negative, effort_weight, max_effort,
                 simultaneous=False, reachieve=True, replan_actions=set(), **kwargs):
    # TODO: alternatively could translate with stream actions on real opt_state and just discard them
    # TODO: only consider axioms that have stream conditions?
    #reachieve = reachieve and not using_optimizers(all_results)
    #for i, result in enumerate(all_results):
    #    print(i, result, result.get_effort())
    applied_results, deferred_results = partition_results(
        evaluations, all_results, apply_now=lambda r: not (simultaneous or r.external.info.simultaneous))
    stream_domain, deferred_from_name = add_stream_actions(domain, deferred_results)

    if reachieve and not using_optimizers(all_results):
        achieved_results = {n.result for n in evaluations.values() if isinstance(n.result, Result)}
        init_evaluations = {e for e, n in evaluations.items() if n.result not in achieved_results}
        applied_results = achieved_results | set(applied_results)
        evaluations = init_evaluations # For clarity

    # TODO: could iteratively increase max_effort
    node_from_atom = get_achieving_streams(evaluations, applied_results, # TODO: apply to all_results?
                                           max_effort=max_effort)
    opt_evaluations = {evaluation_from_fact(f): n.result for f, n in node_from_atom.items()}
    if UNIVERSAL_TO_CONDITIONAL or using_optimizers(all_results):
        goal_expression = add_unsatisfiable_to_goal(stream_domain, goal_expression)

    temporal = isinstance(stream_domain, SimplifiedDomain)
    optimistic_fn = solve_optimistic_temporal if temporal else solve_optimistic_sequential
    instantiated, action_instances, temporal_plan, cost = optimistic_fn(
        domain, stream_domain, applied_results, all_results, opt_evaluations,
        node_from_atom, goal_expression, effort_weight, **kwargs)
    if action_instances is None:
        return FAILED, FAILED, cost

    action_instances, axiom_plans = recover_axioms_plans(instantiated, action_instances)
    # TODO: extract out the minimum set of conditional effects that are actually required
    #simplify_conditional_effects(instantiated.task, action_instances)
    stream_plan, action_instances = recover_simultaneous(
        applied_results, negative, deferred_from_name, action_instances)

    action_plan = transform_plan_args(map(pddl_from_instance, action_instances), obj_from_pddl)
    replan_step = min([step+1 for step, action in enumerate(action_plan)
                       if action.name in replan_actions] or [len(action_plan)+1]) # step after action application

    stream_plan, opt_plan = recover_stream_plan(evaluations, stream_plan, opt_evaluations, goal_expression, stream_domain,
        node_from_atom, action_instances, axiom_plans, negative, replan_step)
    if temporal_plan is not None:
        # TODO: handle deferred streams
        assert all(isinstance(action, Action) for action in opt_plan.action_plan)
        opt_plan.action_plan[:] = temporal_plan
    return stream_plan, opt_plan, cost
Exemplo n.º 3
0
def plan_streams(evaluations, goal_expression, domain, all_results, negative, effort_weight, max_effort,
                 simultaneous=False, reachieve=True, **kwargs):
    # TODO: alternatively could translate with stream actions on real opt_state and just discard them
    # TODO: only consider axioms that have stream conditions?
    #reachieve = reachieve and not using_optimizers(all_results)
    applied_results, deferred_results = partition_results(
        evaluations, all_results, apply_now=lambda r: not (simultaneous or r.external.info.simultaneous))
    stream_domain, deferred_from_name = add_stream_actions(domain, deferred_results)

    if reachieve and not using_optimizers(all_results):
        achieved_results = {n.result for n in evaluations.values() if isinstance(n.result, Result)}
        init_evaluations = {e for e, n in evaluations.items() if n.result not in achieved_results}
        applied_results = achieved_results | set(applied_results)
        evaluations = init_evaluations # For clarity
    # TODO: could iteratively increase max_effort
    node_from_atom = get_achieving_streams(evaluations, applied_results, # TODO: apply to all_results?
                                           max_effort=max_effort)
    opt_evaluations = {evaluation_from_fact(f): n.result for f, n in node_from_atom.items()}
    if UNIVERSAL_TO_CONDITIONAL or using_optimizers(all_results):
        goal_expression = add_unsatisfiable_to_goal(stream_domain, goal_expression)
    instantiated, action_instances, action_plan, cost = solve_optimistic_sequential(
        domain, stream_domain, applied_results, all_results, opt_evaluations, node_from_atom, goal_expression, effort_weight, **kwargs)
    if action_plan is None:
        return action_plan, cost

    axiom_plans = recover_axioms_plans(instantiated, action_instances)
    # TODO: extract out the minimum set of conditional effects that are actually required
    #simplify_conditional_effects(instantiated.task, action_instances)
    stream_plan, action_instances = recover_simultaneous(
        applied_results, negative, deferred_from_name, action_instances)

    stream_plan = recover_stream_plan(evaluations, stream_plan, opt_evaluations, goal_expression,
                                      stream_domain, node_from_atom, action_instances, axiom_plans, negative)

    combined_plan = stream_plan + action_plan
    return combined_plan, cost
Exemplo n.º 4
0
def plan_streams(evaluations,
                 goal_expression,
                 domain,
                 all_results,
                 negative,
                 effort_weight,
                 max_effort,
                 simultaneous=False,
                 reachieve=True,
                 debug=False,
                 **kwargs):
    # TODO: alternatively could translate with stream actions on real opt_state and just discard them
    # TODO: only consider axioms that have stream conditions?
    #reachieve = reachieve and not using_optimizers(all_results)
    applied_results, deferred_results = partition_results(
        evaluations,
        all_results,
        apply_now=lambda r: not (simultaneous or r.external.info.simultaneous))
    stream_domain, deferred_from_name = add_stream_actions(
        domain, deferred_results)

    if reachieve and not using_optimizers(all_results):
        achieved_results = {
            n.result
            for n in evaluations.values() if isinstance(n.result, Result)
        }
        init_evaluations = {
            e
            for e, n in evaluations.items() if n.result not in achieved_results
        }
        applied_results = achieved_results | set(applied_results)
        evaluations = init_evaluations  # For clarity
    # TODO: could iteratively increase max_effort
    node_from_atom = get_achieving_streams(
        evaluations,
        applied_results,  # TODO: apply to all_results?
        max_effort=max_effort)
    opt_evaluations = {
        evaluation_from_fact(f): n.result
        for f, n in node_from_atom.items()
    }
    if using_optimizers(all_results):
        goal_expression = add_unsatisfiable_to_goal(stream_domain,
                                                    goal_expression)
    problem = get_problem(opt_evaluations, goal_expression,
                          stream_domain)  # begin_metric
    with Verbose(debug):
        instantiated = instantiate_task(
            task_from_domain_problem(stream_domain, problem))
    if instantiated is None:
        return None, INF

    if using_optimizers(all_results):
        # TODO: reachieve=False when using optimizers or should add applied facts
        instantiate_optimizer_axioms(instantiated, evaluations,
                                     goal_expression, domain, all_results)
    cost_from_action = {action: action.cost for action in instantiated.actions}
    add_stream_efforts(node_from_atom, instantiated, effort_weight)
    if using_optimizers(applied_results):
        add_optimizer_effects(instantiated, node_from_atom)
    action_from_name = rename_instantiated_actions(instantiated)
    with Verbose(debug):
        sas_task = sas_from_instantiated(instantiated)
        sas_task.metric = True

    # TODO: apply renaming to hierarchy as well
    # solve_from_task | serialized_solve_from_task | abstrips_solve_from_task | abstrips_solve_from_task_sequential
    action_plan, raw_cost = solve_from_task(sas_task, debug=debug, **kwargs)
    #print(raw_cost)
    if action_plan is None:
        return None, INF
    action_instances = [action_from_name[name] for name, _ in action_plan]
    simplify_conditional_effects(instantiated.task, action_instances)
    stream_plan, action_instances = recover_simultaneous(
        applied_results, negative, deferred_from_name, action_instances)
    cost = get_plan_cost(action_instances, cost_from_action)
    axiom_plans = recover_axioms_plans(instantiated, action_instances)

    stream_plan = recover_stream_plan(evaluations, stream_plan,
                                      opt_evaluations, goal_expression,
                                      stream_domain, node_from_atom,
                                      action_instances, axiom_plans, negative)
    #action_plan = obj_from_pddl_plan(parse_action(instance.name) for instance in action_instances)
    action_plan = obj_from_pddl_plan(map(pddl_from_instance, action_instances))

    combined_plan = stream_plan + action_plan
    return combined_plan, cost