Exemplo n.º 1
0
    def set_weight(self, weight):
        lock = FileLock(self.xml_path + '.lock')  # concurrency protection

        def modify_ball_xml(ball_xml_file):
            et = xml.etree.ElementTree.parse(ball_xml_file)
            et.find('body').find('geom').set('mass', "%0.3f" %
                                             weight)  # changing ball weight
            et.write(ball_xml_file)

        with lock:
            modify_ball_xml(self.xml_location1)
            modify_ball_xml(self.xml_location2)
            self.sim_robot = MujocoSimRobot(self.xml_path,
                                            camera_settings=dict(
                                                distance=0.7,
                                                azimuth=-60,
                                                elevation=-50,
                                            ))
        self.sim = self.sim_robot.sim
        self.model = self.sim_robot.model
        self.data = self.sim_robot.data
        self.close()
        if self.sim_robot.renderer._onscreen_renderer:
            import ipdb
            ipdb.set_trace()
            self.render()
Exemplo n.º 2
0
    def __init__(
        self,
        model_path: str,
        frame_skip: int,
        camera_settings: Optional[Dict] = None,
    ):
        """Initializes a new MuJoCo environment.

        Args:
            model_path: The path to the MuJoCo XML file.
            frame_skip: The number of simulation steps per environment step. On
              hardware this influences the duration of each environment step.
            camera_settings: Settings to initialize the simulation camera. This
              can contain the keys `distance`, `azimuth`, and `elevation`.
        """
        self._seed()
        if not os.path.isfile(model_path):
            raise IOError('[MujocoEnv]: Model path does not exist: {}'.format(
                model_path))
        self.frame_skip = frame_skip

        self.sim_robot = MujocoSimRobot(model_path,
                                        camera_settings=camera_settings)
        self.sim = self.sim_robot.sim
        self.model = self.sim_robot.model
        self.data = self.sim_robot.data

        self.metadata = {
            'render.modes': ['human', 'rgb_array', 'depth_array'],
            'video.frames_per_second': int(np.round(1.0 / self.dt))
        }
        self.mujoco_render_frames = False

        self.init_qpos = self.data.qpos.ravel().copy()
        self.init_qvel = self.data.qvel.ravel().copy()
        observation, _reward, done, _info = self.step(np.zeros(self.model.nu))
        assert not done

        bounds = self.model.actuator_ctrlrange.copy()
        act_upper = bounds[:, 1]
        act_lower = bounds[:, 0]

        # Define the action and observation spaces.
        # HACK: MJRL is still using gym 0.9.x so we can't provide a dtype.
        try:
            self.action_space = spaces.Box(act_lower,
                                           act_upper,
                                           dtype=np.float32)
            if isinstance(observation, collections.Mapping):
                self.observation_space = spaces.Dict({
                    k: spaces.Box(-np.inf,
                                  np.inf,
                                  shape=v.shape,
                                  dtype=np.float32)
                    for k, v in observation.items()
                })
            else:
                self.obs_dim = np.sum([
                    o.size for o in observation
                ]) if type(observation) is tuple else observation.size
                self.observation_space = spaces.Box(-np.inf,
                                                    np.inf,
                                                    (observation.shape[0], ),
                                                    dtype=np.float32)

        except TypeError:
            # Fallback case for gym 0.9.x
            self.action_space = spaces.Box(act_lower, act_upper)
            assert not isinstance(
                observation, collections.Mapping
            ), 'gym 0.9.x does not support dictionary observation.'
            self.obs_dim = np.sum([
                o.size for o in observation
            ]) if type(observation) is tuple else observation.size
            self.observation_space = spaces.Box(-np.inf, np.inf,
                                                observation.shape)
Exemplo n.º 3
0
class MujocoEnv(gym.Env):
    """Superclass for all MuJoCo environments."""
    def __init__(
        self,
        model_path: str,
        frame_skip: int,
        camera_settings: Optional[Dict] = None,
    ):
        """Initializes a new MuJoCo environment.

        Args:
            model_path: The path to the MuJoCo XML file.
            frame_skip: The number of simulation steps per environment step. On
              hardware this influences the duration of each environment step.
            camera_settings: Settings to initialize the simulation camera. This
              can contain the keys `distance`, `azimuth`, and `elevation`.
        """
        self._seed()
        if not os.path.isfile(model_path):
            raise IOError('[MujocoEnv]: Model path does not exist: {}'.format(
                model_path))
        self.frame_skip = frame_skip

        self.sim_robot = MujocoSimRobot(model_path,
                                        camera_settings=camera_settings)
        self.sim = self.sim_robot.sim
        self.model = self.sim_robot.model
        self.data = self.sim_robot.data

        self.metadata = {
            'render.modes': ['human', 'rgb_array', 'depth_array'],
            'video.frames_per_second': int(np.round(1.0 / self.dt))
        }
        self.mujoco_render_frames = False

        self.init_qpos = self.data.qpos.ravel().copy()
        self.init_qvel = self.data.qvel.ravel().copy()
        observation, _reward, done, _info = self.step(np.zeros(self.model.nu))
        assert not done

        bounds = self.model.actuator_ctrlrange.copy()
        act_upper = bounds[:, 1]
        act_lower = bounds[:, 0]

        # Define the action and observation spaces.
        # HACK: MJRL is still using gym 0.9.x so we can't provide a dtype.
        try:
            self.action_space = spaces.Box(act_lower,
                                           act_upper,
                                           dtype=np.float32)
            if isinstance(observation, collections.Mapping):
                self.observation_space = spaces.Dict({
                    k: spaces.Box(-np.inf,
                                  np.inf,
                                  shape=v.shape,
                                  dtype=np.float32)
                    for k, v in observation.items()
                })
            else:
                self.obs_dim = np.sum([
                    o.size for o in observation
                ]) if type(observation) is tuple else observation.size
                self.observation_space = spaces.Box(-np.inf,
                                                    np.inf,
                                                    (observation.shape[0], ),
                                                    dtype=np.float32)

        except TypeError:
            # Fallback case for gym 0.9.x
            self.action_space = spaces.Box(act_lower, act_upper)
            assert not isinstance(
                observation, collections.Mapping
            ), 'gym 0.9.x does not support dictionary observation.'
            self.obs_dim = np.sum([
                o.size for o in observation
            ]) if type(observation) is tuple else observation.size
            self.observation_space = spaces.Box(-np.inf, np.inf,
                                                observation.shape)

    def seed(self, seed=None):  # Compatibility with new gym
        return self._seed(seed)

    def _seed(self, seed=None):
        self.np_random, seed = seeding.np_random(seed)
        return [seed]

    # methods to override:
    # ----------------------------

    def reset_model(self):
        """Reset the robot degrees of freedom (qpos and qvel).

        Implement this in each subclass.
        """
        raise NotImplementedError

    # -----------------------------

    def reset(self, mode="train"):  # compatibility with new gym
        return self._reset(mode="train")

    def _reset(self, mode="train"):
        self.sim.reset()
        self.sim.forward()
        ob = self.reset_model()
        return ob

    def set_state(self, qpos, qvel):
        assert qpos.shape == (self.model.nq, ) and qvel.shape == (
            self.model.nv, )
        state = self.sim.get_state()
        for i in range(self.model.nq):
            state.qpos[i] = qpos[i]
        for i in range(self.model.nv):
            state.qvel[i] = qvel[i]
        self.sim.set_state(state)
        self.sim.forward()

    @property
    def dt(self):
        return self.model.opt.timestep * self.frame_skip

    def do_simulation(self, ctrl, n_frames):
        for i in range(self.model.nu):
            self.sim.data.ctrl[i] = ctrl[i]

        for _ in range(n_frames):
            self.sim.step()

            # TODO(michaelahn): Remove this; render should be called separately.
            if self.mujoco_render_frames is True:
                self.mj_render()

    def render(self,
               mode='human',
               width=DEFAULT_RENDER_SIZE,
               height=DEFAULT_RENDER_SIZE,
               camera_id=-1):
        """Renders the environment.

        Args:
            mode: The type of rendering to use.
                - 'human': Renders to a graphical window.
                - 'rgb_array': Returns the RGB image as an np.ndarray.
                - 'depth_array': Returns the depth image as an np.ndarray.
            width: The width of the rendered image. This only affects offscreen
                rendering.
            height: The height of the rendered image. This only affects
                offscreen rendering.
            camera_id: The ID of the camera to use. By default, this is the free
                camera. If specified, only affects offscreen rendering.
        """
        if mode == 'human':
            self.sim_robot.renderer.render_to_window()
        elif mode == 'rgb_array':
            assert width and height
            return self.sim_robot.renderer.render_offscreen(
                width, height, mode=RenderMode.RGB, camera_id=camera_id)
        elif mode == 'depth_array':
            assert width and height
            return self.sim_robot.renderer.render_offscreen(
                width, height, mode=RenderMode.DEPTH, camera_id=camera_id)
        elif mode == 'segmentation':
            assert width and height
            return self.sim_robot.renderer.render_offscreen(
                width,
                height,
                mode=RenderMode.SEGMENTATION,
                camera_id=camera_id)
        else:
            raise NotImplementedError(mode)

    def close(self):
        self.sim_robot.close()

    def mj_render(self):
        """Backwards compatibility with MJRL."""
        self.render(mode='human')

    def state_vector(self):
        state = self.sim.get_state()
        return np.concatenate([state.qpos.flat, state.qvel.flat])

    # -----------------------------

    def visualize_policy(self,
                         policy,
                         horizon=1000,
                         num_episodes=1,
                         mode='exploration',
                         env=None,
                         render=True):
        if env is None:
            env = self
        self.mujoco_render_frames = render

        all_rewards = []
        all_scores_mean = []
        all_scores_last = []
        for ep in range(num_episodes):
            o = env.reset()
            d = False
            t = 0
            rew_for_ep = 0
            scores_for_ep = []
            while t < horizon and d is False:
                a = policy.get_action(
                    o)[0] if mode == 'exploration' else policy.get_action(
                        o)[1]['evaluation']
                o, r, d, info = env.step(a)
                if type(d) == np.float64:
                    d = not (d == 0)

                t = t + 1
                rew_for_ep += r
                scores_for_ep.append(info['score'])

            all_rewards.append(rew_for_ep)
            all_scores_mean.append(np.mean(scores_for_ep))
            all_scores_last.append(np.mean(scores_for_ep[-5:]))
            print("rollout rew: ", rew_for_ep)

        print("\n\nREW: ", np.mean(all_rewards), ",", np.std(all_rewards))
        print("SCO mean: ", np.mean(all_scores_mean), ",",
              np.std(all_scores_mean), "\n\n")
        self.mujoco_render_frames = False

    def visualize_policy_offscreen(self,
                                   policy,
                                   horizon=1000,
                                   num_episodes=1,
                                   frame_size=(640, 480),
                                   mode='exploration',
                                   save_loc='/tmp/',
                                   filename='newvid',
                                   camera_name=None):
        import skvideo.io
        for ep in range(num_episodes):
            print('Episode %d: rendering offline ' % ep, end='', flush=True)
            o = self.reset()
            d = False
            t = 0
            arrs = []
            t0 = time.time()
            while t < horizon and d is False:
                a = policy.get_action(
                    o)[0] if mode == 'exploration' else policy.get_action(
                        o)[1]['evaluation']
                o, r, d, _ = self.step(a)
                t = t + 1
                curr_frame = self.sim.render(width=frame_size[0],
                                             height=frame_size[1],
                                             mode='offscreen',
                                             camera_name=camera_name,
                                             device_id=0)
                arrs.append(curr_frame[::-1, :, :])
                print(t, end=', ', flush=True)
            file_name = save_loc + filename + str(ep) + '.mp4'
            skvideo.io.vwrite(file_name, np.asarray(arrs))
            print('saved', file_name)
            t1 = time.time()
            print('time taken = %f' % (t1 - t0))