def test_polar_grid(): """ test simple polar grid """ grid = PolarGrid(4, 8) assert grid.dim == 2 assert grid.numba_type == "f8[:]" assert grid.shape == (8, ) assert not grid.has_hole assert grid.discretization[0] == pytest.approx(0.5) assert not grid.uniform_cell_volumes np.testing.assert_array_equal(grid.discretization, np.array([0.5])) assert grid.volume == pytest.approx(np.pi * 4**2) assert grid.volume == pytest.approx(grid.integrate(1)) np.testing.assert_allclose(grid.axes_coords[0], np.linspace(0.25, 3.75, 8)) a = grid.get_operator("laplace", "natural")(np.random.random(8)) assert a.shape == (8, ) assert np.all(np.isfinite(a)) # random points c = np.random.randint(8, size=(6, 1)) p = grid.cell_to_point(c) np.testing.assert_array_equal(c, grid.point_to_cell(p)) assert grid.contains_point(grid.get_random_point()) assert grid.contains_point(grid.get_random_point(3.99)) assert "laplace" in grid.operators
def test_poisson_solver_polar(): """ test the poisson solver on Polar grids """ grid = PolarGrid(4, 8) for bc_val in ["natural", {"value": 1}]: bcs = grid.get_boundary_conditions(bc_val) poisson = grid.get_operator("poisson_solver", bcs) laplace = grid.get_operator("laplace", bcs) d = np.random.random(grid.shape) d -= ScalarField(grid, d).average # balance the right hand side np.testing.assert_allclose(laplace(poisson(d)), d, err_msg=f"bcs = {bc_val}") grid = PolarGrid([2, 4], 8) for bc_val in ["natural", {"value": 1}]: bcs = grid.get_boundary_conditions(bc_val) poisson = grid.get_operator("poisson_solver", bcs) laplace = grid.get_operator("laplace", bcs) d = np.random.random(grid.shape) d -= ScalarField(grid, d).average # balance the right hand side np.testing.assert_allclose(laplace(poisson(d)), d, err_msg=f"bcs = {bc_val}")
def test_conservative_laplace(): """ test and compare the two implementation of the laplace operator """ grid = PolarGrid(1.5, 8) f = ScalarField.random_uniform(grid) bcs = grid.get_boundary_conditions("natural") lap = ops.make_laplace(bcs) np.testing.assert_allclose(f.apply(lap).integral, 0, atol=1e-12)
def test_small_annulus(make_op, field, rank): """ test whether a small annulus gives the same result as a sphere """ grids = [ PolarGrid((0, 1), 8), PolarGrid((1e-8, 1), 8), PolarGrid((0.1, 1), 8) ] f = field.random_uniform(grids[0]) res = [ make_op(g.get_boundary_conditions(rank=rank))(f.data) for g in grids ] np.testing.assert_almost_equal(res[0], res[1], decimal=5) assert np.linalg.norm(res[0] - res[2]) > 1e-3
def test_grid_div_grad(): """ compare div grad to laplacian for polar grids """ grid = PolarGrid(2 * np.pi, 16) r = grid.axes_coords[0] arr = np.cos(r) laplace = grid.get_operator("laplace", "derivative") grad = grid.get_operator("gradient", "derivative") div = grid.get_operator("divergence", "value") a = laplace(arr) b = div(grad(arr)) res = -np.sin(r) / r - np.cos(r) # do not test the radial boundary points np.testing.assert_allclose(a[1:-1], res[1:-1], rtol=0.1, atol=0.1) np.testing.assert_allclose(b[1:-1], res[1:-1], rtol=0.1, atol=0.1)
def iter_grids(): """ generator providing some test grids """ for periodic in [True, False]: yield UnitGrid([3], periodic=periodic) yield UnitGrid([3, 3, 3], periodic=periodic) yield CartesianGrid([[-1, 2], [0, 3]], [5, 7], periodic=periodic) yield CylindricalGrid(3, [-1, 2], [7, 8], periodic_z=periodic) yield PolarGrid(3, 4) yield SphericalGrid(3, 4)
def test_gradient_squared(r_inner): """ compare gradient squared operator """ grid = PolarGrid((r_inner, 5), 64) field = ScalarField.random_harmonic(grid, modes=1) s1 = field.gradient("natural").to_scalar("squared_sum") s2 = field.gradient_squared("natural", central=True) np.testing.assert_allclose(s1.data, s2.data, rtol=0.1, atol=0.1) s3 = field.gradient_squared("natural", central=False) np.testing.assert_allclose(s1.data, s3.data, rtol=0.1, atol=0.1) assert not np.array_equal(s2.data, s3.data)
def test_polar_to_cartesian(): """ test conversion of polar grid to Cartesian """ expr_pol = "1 / (1 + r**2)" expr_cart = expr_pol.replace("r**2", "(x**2 + y**2)") grid_pol = PolarGrid(7, 16) pf_pol = ScalarField.from_expression(grid_pol, expression=expr_pol) grid_cart = CartesianGrid([[-4, 4], [-3.9, 4.1]], [16, 16]) pf_cart1 = pf_pol.interpolate_to_grid(grid_cart) pf_cart2 = ScalarField.from_expression(grid_cart, expression=expr_cart) np.testing.assert_allclose(pf_cart1.data, pf_cart2.data, atol=0.1)
def test_grid_laplace(): """ test the polar implementation of the laplace operator """ grid_sph = PolarGrid(7, 8) grid_cart = CartesianGrid([[-5, 5], [-5, 5]], [12, 11]) a_1d = ScalarField.from_expression(grid_sph, "cos(r)") a_2d = a_1d.interpolate_to_grid(grid_cart) b_2d = a_2d.laplace("natural") b_1d = a_1d.laplace("natural") b_1d_2 = b_1d.interpolate_to_grid(grid_cart) i = slice(1, -1) # do not compare boundary points np.testing.assert_allclose(b_1d_2.data[i, i], b_2d.data[i, i], rtol=0.2, atol=0.2)
def test_findiff(): """ test operator for a simple polar grid """ grid = PolarGrid(1.5, 3) _, _, r2 = grid.axes_coords[0] assert grid.discretization == (0.5, ) s = ScalarField(grid, [1, 2, 4]) v = VectorField(grid, [[1, 2, 4], [0] * 3]) # test gradient grad = s.gradient(bc="value") np.testing.assert_allclose(grad.data[0, :], [1, 3, -6]) grad = s.gradient(bc="derivative") np.testing.assert_allclose(grad.data[0, :], [1, 3, 2]) # test divergence div = v.divergence(bc="value") np.testing.assert_allclose(div.data, [5, 17 / 3, -6 + 4 / r2]) div = v.divergence(bc="derivative") np.testing.assert_allclose(div.data, [5, 17 / 3, 2 + 4 / r2])
def test_polar_annulus(): """ test simple polar grid with a hole """ grid = PolarGrid((2, 4), 8) assert grid.dim == 2 assert grid.numba_type == "f8[:]" assert grid.shape == (8, ) assert grid.has_hole assert grid.discretization[0] == pytest.approx(0.25) assert not grid.uniform_cell_volumes np.testing.assert_array_equal(grid.discretization, np.array([0.25])) assert grid.volume == pytest.approx(np.pi * (4**2 - 2**2)) assert grid.volume == pytest.approx(grid.integrate(1)) assert grid.radius == (2, 4) np.testing.assert_allclose(grid.axes_coords[0], np.linspace(2.125, 3.875, 8)) a = grid.get_operator("laplace", "natural")(np.random.random(8)) assert a.shape == (8, ) assert np.all(np.isfinite(a)) # random points c = np.random.randint(8, size=(6, 1)) p = grid.cell_to_point(c) np.testing.assert_array_equal(c, grid.point_to_cell(p)) assert grid.contains_point(grid.get_random_point()) assert grid.contains_point(grid.get_random_point(1.99)) # test boundary points np.testing.assert_equal(grid._boundary_coordinates(0, False), np.array([2])) np.testing.assert_equal(grid._boundary_coordinates(0, True), np.array([4]))