Exemplo n.º 1
0
def test_spherical_grid():
    """test simple spherical grid"""
    grid = SphericalSymGrid(4, 8)
    assert grid.dim == 3
    assert grid.numba_type == "f8[:]"
    assert grid.shape == (8, )
    assert not grid.has_hole
    assert grid.discretization[0] == pytest.approx(0.5)
    assert not grid.uniform_cell_volumes
    np.testing.assert_array_equal(grid.discretization, np.array([0.5]))
    assert grid.volume == pytest.approx(4 / 3 * np.pi * 4**3)
    assert grid.volume == pytest.approx(grid.integrate(1))

    np.testing.assert_allclose(grid.axes_coords[0], np.linspace(0.25, 3.75, 8))

    a = grid.make_operator("laplace",
                           "auto_periodic_neumann")(np.random.random(8))
    assert a.shape == (8, )
    assert np.all(np.isfinite(a))

    # random points
    c = np.random.randint(8, size=(6, 1))
    p = grid.cell_to_point(c)
    np.testing.assert_array_equal(c, grid.point_to_cell(p))

    assert grid.contains_point(grid.get_random_point())
    assert grid.contains_point(grid.get_random_point(3.99))
    assert "laplace" in grid.operators
Exemplo n.º 2
0
def test_spherical_annulus():
    """test simple spherical grid with a hole"""
    grid = SphericalSymGrid((2, 4), 8)
    assert grid.dim == 3
    assert grid.numba_type == "f8[:]"
    assert grid.shape == (8,)
    assert grid.has_hole
    assert grid.discretization[0] == pytest.approx(0.25)
    assert not grid.uniform_cell_volumes
    np.testing.assert_array_equal(grid.discretization, np.array([0.25]))
    assert grid.volume == pytest.approx(4 / 3 * np.pi * (4**3 - 2**3))
    assert grid.volume == pytest.approx(grid.integrate(1))
    assert grid.radius == (2, 4)

    np.testing.assert_allclose(grid.axes_coords[0], np.linspace(2.125, 3.875, 8))

    a = grid.make_operator("laplace", "auto_periodic_neumann")(np.random.random(8))
    assert a.shape == (8,)
    assert np.all(np.isfinite(a))

    assert grid.contains_point(grid.get_random_point(coords="cartesian"))
    p = grid.get_random_point(boundary_distance=1.99, coords="cartesian")
    assert grid.contains_point(p)

    # test boundary points
    np.testing.assert_equal(grid._boundary_coordinates(0, False), np.array([2]))
    np.testing.assert_equal(grid._boundary_coordinates(0, True), np.array([4]))
Exemplo n.º 3
0
def test_poisson_solver_spherical():
    """test the poisson solver on Polar grids"""
    for grid in [SphericalSymGrid(4, 8), SphericalSymGrid([2, 4], 8)]:
        for bc_val in ["auto_periodic_neumann", {"value": 1}]:
            bcs = grid.get_boundary_conditions(bc_val)
            d = ScalarField.random_uniform(grid)
            d -= d.average  # balance the right hand side
            sol = solve_poisson_equation(d, bcs)
            test = sol.laplace(bcs)
            np.testing.assert_allclose(
                test.data, d.data, err_msg=f"bcs={bc_val}, grid={grid}", rtol=1e-6
            )
Exemplo n.º 4
0
def iter_grids():
    """generator providing some test grids"""
    for periodic in [True, False]:
        yield UnitGrid([3], periodic=periodic)
        yield UnitGrid([3, 3, 3], periodic=periodic)
        yield CartesianGrid([[-1, 2], [0, 3]], [5, 7], periodic=periodic)
        yield CylindricalSymGrid(3, [-1, 2], [7, 8], periodic_z=periodic)
    yield PolarSymGrid(3, 4)
    yield SphericalSymGrid(3, 4)
Exemplo n.º 5
0
def test_gradient_squared(r_inner):
    """compare gradient squared operator"""
    grid = SphericalSymGrid((r_inner, 5), 64)
    field = ScalarField.random_harmonic(grid, modes=1)
    s1 = field.gradient("auto_periodic_neumann").to_scalar("squared_sum")
    s2 = field.gradient_squared("auto_periodic_neumann", central=True)
    np.testing.assert_allclose(s1.data, s2.data, rtol=0.1, atol=0.1)
    s3 = field.gradient_squared("auto_periodic_neumann", central=False)
    np.testing.assert_allclose(s1.data, s3.data, rtol=0.1, atol=0.1)
    assert not np.array_equal(s2.data, s3.data)
Exemplo n.º 6
0
def test_conservative_laplace_sph():
    """test and compare the two implementation of the laplace operator"""
    r_max = 3.14
    for r_min in [0, 0.1]:
        grid = SphericalSymGrid((r_min, r_max), 8)
        f = ScalarField.from_expression(grid, "cos(r)")

        res1 = f.laplace("auto_periodic_neumann", conservative=True)
        res2 = f.laplace("auto_periodic_neumann", conservative=False)
        np.testing.assert_allclose(res1.data, res2.data, rtol=0.5, atol=0.5)
        np.testing.assert_allclose(res1.integral, 0, atol=1e-12)
Exemplo n.º 7
0
def test_examples_tensor_sph():
    """compare derivatives of tensorial fields for spherical grids"""
    grid = SphericalSymGrid(1, 32)
    tf = Tensor2Field.from_expression(grid, [["r**3"] * 3] * 3)
    tfd = tf.data
    tfd[0, 1] = tfd[1, 1] = tfd[1, 2] = tfd[2, 1] = tfd[2, 2] = 0

    # tensor divergence
    res = tf.divergence([{"derivative_normal": 0}, {"value_normal": [1, 1, 1]}])
    expect = VectorField.from_expression(grid, ["5 * r**2", "5 * r**2", "6 * r**2"])
    np.testing.assert_allclose(res.data, expect.data, rtol=0.1, atol=0.1)
Exemplo n.º 8
0
def test_spherical_to_cartesian():
    """test conversion of spherical grid to cartesian"""
    expr_sph = "1. / (1 + r**2)"
    expr_cart = expr_sph.replace("r**2", "(x**2 + y**2 + z**2)")

    grid_sph = SphericalSymGrid(7, 16)
    pf_sph = ScalarField.from_expression(grid_sph, expression=expr_sph)

    grid_cart = CartesianGrid([[-4, 4], [-3.9, 4.1], [-4.1, 3.9]], [16] * 3)
    pf_cart1 = pf_sph.interpolate_to_grid(grid_cart)
    pf_cart2 = ScalarField.from_expression(grid_cart, expression=expr_cart)
    np.testing.assert_allclose(pf_cart1.data, pf_cart2.data, atol=0.1)
Exemplo n.º 9
0
def test_grid_div_grad_sph():
    """compare div grad to laplacian"""
    grid = SphericalSymGrid(2 * np.pi, 16)
    field = ScalarField.from_expression(grid, "cos(r)")

    a = field.laplace("derivative")
    b = field.gradient("derivative").divergence("value")
    res = ScalarField.from_expression(grid, "-2 * sin(r) / r - cos(r)")

    # do not test the radial boundary points
    np.testing.assert_allclose(a.data[1:-1], res.data[1:-1], rtol=0.1, atol=0.1)
    np.testing.assert_allclose(b.data[1:-1], res.data[1:-1], rtol=0.1, atol=0.1)
Exemplo n.º 10
0
def test_grid_laplace():
    """test the polar implementation of the laplace operator"""
    grid_sph = SphericalSymGrid(9, 11)
    grid_cart = CartesianGrid([[-5, 5], [-5, 5], [-5, 5]], [12, 10, 11])

    a_1d = ScalarField.from_expression(grid_sph, "cos(r)")
    a_3d = a_1d.interpolate_to_grid(grid_cart)

    b_3d = a_3d.laplace("auto_periodic_neumann")
    b_1d = a_1d.laplace("auto_periodic_neumann")
    b_1d_3 = b_1d.interpolate_to_grid(grid_cart)

    i = slice(1, -1)  # do not compare boundary points
    np.testing.assert_allclose(
        b_1d_3.data[i, i, i], b_3d.data[i, i, i], rtol=0.2, atol=0.2
    )
Exemplo n.º 11
0
def test_examples_scalar_sph():
    """compare derivatives of scalar fields for spherical grids"""
    grid = SphericalSymGrid(1, 32)
    sf = ScalarField.from_expression(grid, "r**3")

    # gradient
    res = sf.gradient([{"derivative": 0}, {"derivative": 3}])
    expect = VectorField.from_expression(grid, ["3 * r**2", 0, 0])
    np.testing.assert_allclose(res.data, expect.data, rtol=0.1, atol=0.1)

    # gradient squared
    expect = ScalarField.from_expression(grid, "9 * r**4")
    for c in [True, False]:
        res = sf.gradient_squared([{"derivative": 0}, {"value": 1}], central=c)
        np.testing.assert_allclose(res.data, expect.data, rtol=0.1, atol=0.1)

    # laplace
    res = sf.laplace([{"derivative": 0}, {"derivative": 3}])
    expect = ScalarField.from_expression(grid, "12 * r")
    np.testing.assert_allclose(res.data, expect.data, rtol=0.1, atol=0.1)
Exemplo n.º 12
0
def main():
    """main routine testing the performance"""
    print("Reports calls-per-second (larger is better)")
    print("  The `CUSTOM` method implemented by hand is the baseline case.")
    print("  The `FLEXIBLE` method is a serial implementation using the "
          "boundary conditions from the package.")
    print("  The other methods use the functions supplied by the package.\n")

    # Cartesian grid with different shapes and boundary conditions
    for shape in [(32, 32), (512, 512)]:
        for periodic in [True, False]:
            grid = UnitGrid(shape, periodic=periodic)
            print(grid)
            field = ScalarField.random_normal(grid)
            bcs = grid.get_boundary_conditions("natural", rank=0)
            expected = field.laplace("natural")

            for method in [
                    "CUSTOM", "FLEXIBLE", "OPTIMIZED", "numba", "scipy"
            ]:
                if method == "CUSTOM":
                    laplace = custom_laplace_2d(shape, periodic=periodic)
                elif method == "FLEXIBLE":
                    laplace = flexible_laplace_2d(bcs)
                elif method == "OPTIMIZED":
                    laplace = optimized_laplace_2d(bcs)
                elif method in {"numba", "scipy"}:
                    laplace = grid.make_operator("laplace",
                                                 bc=bcs,
                                                 backend=method)
                else:
                    raise ValueError(f"Unknown method `{method}`")

                # call once to pre-compile and test result
                if method == "OPTIMIZED":
                    result = laplace(field._data_all)
                    np.testing.assert_allclose(result, expected.data)
                    speed = estimate_computation_speed(laplace,
                                                       field._data_all)
                else:
                    np.testing.assert_allclose(laplace(field.data),
                                               expected.data)
                    speed = estimate_computation_speed(laplace, field.data)
                print(f"{method:>9s}: {int(speed):>9d}")
            print()

    # Cylindrical grid with different shapes
    for shape in [(32, 64), (512, 512)]:
        grid = CylindricalSymGrid(shape[0], [0, shape[1]], shape)
        print(f"Cylindrical grid, shape={shape}")
        field = ScalarField.random_normal(grid)
        bcs = Boundaries.from_data(grid, "derivative")
        expected = field.laplace(bcs)

        for method in ["CUSTOM", "numba"]:
            if method == "CUSTOM":
                laplace = custom_laplace_cyl_neumann(shape)
            elif method == "numba":
                laplace = grid.make_operator("laplace", bc=bcs)
            else:
                raise ValueError(f"Unknown method `{method}`")
            # call once to pre-compile and test result
            np.testing.assert_allclose(laplace(field.data), expected.data)
            speed = estimate_computation_speed(laplace, field.data)
            print(f"{method:>8s}: {int(speed):>9d}")
        print()

    # Spherical grid with different shapes
    for shape in [32, 512]:
        grid = SphericalSymGrid(shape, shape)
        print(grid)
        field = ScalarField.random_normal(grid)
        bcs = Boundaries.from_data(grid, "derivative")

        for conservative in [True, False]:
            laplace = grid.make_operator("laplace",
                                         bcs,
                                         conservative=conservative)
            laplace(field.data)  # call once to pre-compile
            speed = estimate_computation_speed(laplace, field.data)
            print(
                f" numba (conservative={str(conservative):<5}): {int(speed):>9d}"
            )
        print()
Exemplo n.º 13
0
"""
Spherically symmetric PDE
=========================

This example illustrates how to solve a PDE in a spherically symmetric geometry.
"""

from pde import DiffusionPDE, ScalarField, SphericalSymGrid

grid = SphericalSymGrid(radius=[1, 5], shape=128)  # generate grid
state = ScalarField.random_uniform(grid)  # generate initial condition

eq = DiffusionPDE(0.1)  # define the PDE
result = eq.solve(state, t_range=0.1, dt=0.001)

result.plot(kind="image")