Exemplo n.º 1
0
def pdfflow_tester(pdf, members=None):
    """Test several pdfflow features:
    - Check the single/many/all-pid signatures
    - Checks the python and TF signatures
    - Checks the output of the python and TF signatures are the same
    - Checks the expected shape of the signatures is correct
    """
    grid_size = 7
    x = np.random.rand(grid_size)
    q2 = 1000.0 * np.random.rand(grid_size)
    xtf = float_me(x)
    q2tf = float_me(q2)
    # Check I can get just one pid
    for i in range(-1, 2):
        # as int
        res_1 = pdf.py_xfxQ2(i, x, q2)
        # as list
        res_2 = pdf.py_xfxQ2([i], x, q2)
        np.testing.assert_allclose(res_1, res_2)
        # as tf objects
        tfpid = int_me([i])
        res_3 = pdf.xfxQ2(tfpid, xtf, q2tf)
        np.testing.assert_allclose(res_2, res_3)

        # Check shape
        if members is None:
            assert res_1.numpy().shape == (grid_size, )
        else:
            assert res_1.numpy().shape == (
                members,
                grid_size,
            )

    # Check I can get more than one pid
    nfl_size = 6
    fl_scheme = pdf.flavor_scheme.numpy()
    nfl_total = fl_scheme.size
    many_pid = np.random.choice(fl_scheme, nfl_size)

    res_1 = pdf.py_xfxQ2(many_pid, x, q2)
    res_2 = pdf.xfxQ2(int_me(many_pid), xtf, q2tf)
    np.testing.assert_allclose(res_1, res_2)
    # Check shape
    if members is None:
        assert res_1.numpy().shape == (grid_size, nfl_size)
    else:
        assert res_1.numpy().shape == (members, grid_size, nfl_size)

    # Check I can actually get all PID
    res_1 = pdf.py_xfxQ2_allpid(x, q2)
    res_2 = pdf.xfxQ2_allpid(xtf, q2tf)

    np.testing.assert_allclose(res_1, res_2)
    # Check shape
    if members is None:
        assert res_1.numpy().shape == (grid_size, nfl_total)
    else:
        assert res_1.numpy().shape == (members, grid_size, nfl_total)
Exemplo n.º 2
0
    def py_xfxQ2(self, pid, arr_x, arr_q2):
        """
        Python interface for pdfflow
        The input gets converted to the right tensorflow type
        before calling the corresponding function: `xfxQ2`
        returns PDF evaluated in each f(x,q2) for each pid

        The output of the function is of shape
        (members, number_of_points, flavours)
        but note that dimensions of size 1 will be squeezed out.

        Example
        -------
        >>> from pdfflow.pflow import mkPDFs
        >>> from pdfflow.configflow import run_eager, float_me, int_me
        >>> run_eager(True)
        >>> pdf = mkPDFs("NNPDF31_nlo_as_0118", [0, 1, 4])
        >>> pdf.py_xfxQ2(21, [0.4, 0.5], [15625.0, 15625.0])
        <tf.Tensor: shape=(3, 2), dtype=float64, numpy=
        array([[0.02977381, 0.00854525],
            [0.03653673, 0.00929325],
            [0.031387  , 0.00896622]])>
        >>> pdf.py_xfxQ2([1,2], [0.4], [15625.0])
        <tf.Tensor: shape=(3, 2), dtype=float64, numpy=
        array([[0.05569674, 0.19323399],
            [0.05352555, 0.18965438],
            [0.04515956, 0.18704451]])>


        Parameters
        ----------
            pid: list(int)
                list of PID to be computed
            arr_x: np.array
                grid on x where to compute the PDF
            arr_q2: np.array
                grid on q^2 where to compute the PDF
        Returns
        -------
            pdf: tensor
                grid of results ([members], [number of points], [flavour])
        """
        # if pid is None, the mask is set to true everywhere
        if pid is None:
            return self.py_xfxQ2_allpid(arr_x, arr_q2)

        tensor_pid = tf.reshape(int_me(pid), (-1, ))
        a_x = float_me(arr_x)
        a_q2 = float_me(arr_q2)
        return self.xfxQ2(tensor_pid, a_x, a_q2)
Exemplo n.º 3
0
    def py_alphasQ(self, arr_q):
        """
        User interface for pdfflow alphas interpolation when called
        with python variables.
        Returns alpha_s for each value of Q
        User interface for pdfflow alphas interpolation when called with

        Example
        -------
        >>> from pdfflow.pflow import mkPDF
        >>> from pdfflow.configflow import run_eager
        >>> run_eager(True)
        >>> pdf = mkPDF("NNPDF31_nlo_as_0118/0")
        >>> pdf.py_alphasQ([125.0, 94])
        <tf.Tensor: shape=(2,), dtype=float64, numpy=array([0.11264939, 0.11746421])>

        Parameters
        ----------
            arr_q: tf.tensor, dtype=float
                grid on q where to compute alphas
        Returns
        -------
            alphas: tensor
                alphas evaluated in each q query point
        """
        # Parse the input
        a_q = float_me(arr_q)

        # Perform the actual computation
        return self.alphasQ(a_q)
Exemplo n.º 4
0
def rapidity_dif(p1, p2):
    """ Computes the rapidity difference between p1 and p2
    y = 1/2*log(E+z / E-z)
    """
    num = (p1[0, :] + p1[3, :]) * (p2[0, :] - p2[3, :])
    den = (p1[0, :] - p1[3, :]) * (p2[0, :] + p2[3, :])
    return float_me(0.5) * tf.math.log(num / den)
Exemplo n.º 5
0
def lowx_lowq2_extrapolation(
    a_x, a_q2, padded_x, s_x, padded_q2, s_q2, actual_padded,
):
    """
    Extrapolation in low q2, low x regime

    Parameters
    ----------
        a_x: tf.tensor of shape [None]
            query of values of log(x)
        a_q2: tf.tensor of shape [None]
            query of values of log(q2)
        padded_x: tf.tensor of shape [None]
            value for all the knots on the x axis
            padded with one zero at the beginning and one at the end to
            avoid out of range errors when queryingpoints near boundaries
        s_x: tf.tensor of shape []
            size of x knots tensor without padding
        padded_q2: tf.tensor of shape [None]
            value for all the knots on the q2 axis
            padded with one zero at the beginning and one at the end to
            avoid out of range errors when querying points near boundaries
        s_q2: tf.tensor of shape []
            size of q2 knots tensor without padding
        actual_padded: tf.tensor of shape [None,None]
            pdf values: first axis is the flattened padded (q2,x) grid,
            second axis is needed pid column (dimension depends on the query)
    """
    corn_x = padded_x[1:3]
    corn_q2 = tf.stack([padded_q2[1], padded_q2[1]], 0)

    f = interpolate(
        tf.concat([corn_x, corn_x], 0),
        tf.concat([corn_q2, 1.01 * corn_q2], 0),
        padded_x,
        s_x,
        padded_q2,
        s_q2,
        actual_padded,
    )

    fq2Min = extrapolate_linear(a_x, corn_x[0], corn_x[1], f[:1], f[1:2])

    fq2Min1 = extrapolate_linear(a_x, corn_x[0], corn_x[1], f[2:3], f[3:])

    a_q2 = tf.expand_dims(tf.math.exp(a_q2), 1)
    corn_q2 = tf.math.exp(corn_q2[0])

    mask = tf.math.abs(fq2Min) >= 1e-5
    anom = tf.where(
        mask, tf.maximum(float_me(-2.5), (fq2Min1 - fq2Min) / fq2Min / 0.01), fone
    )

    factor = tf.math.pow(a_q2 / corn_q2, anom * a_q2 / corn_q2 + 1.0 - a_q2 / corn_q2)

    return fq2Min * factor
Exemplo n.º 6
0
    def py_xfxQ2_allpid(self, arr_x, arr_q2):
        """
        Python interface for pdfflow
        The input gets converted to the right tensorflow type
        before calling the corresponding function: `xfxQ2_allpid`
        Returns all flavours

        The output of the function is of shape
        (members, number_of_points, all_flavours)
        but note that dimensions of size 1 will be squeezed out.

        Example
        -------
        >>> from pdfflow.pflow import mkPDF
        >>> from pdfflow.configflow import run_eager
        >>> run_eager(True)
        >>> pdf = mkPDF("NNPDF31_nlo_as_0118/0")
        >>> pdf.py_xfxQ2_allpid([0.4], [15625.0])
        <tf.Tensor: shape=(11,), dtype=float64, numpy=
        array([2.03487396e-04, 4.64913697e-03, 2.36497526e-04, 4.54391659e-03,
            3.81215383e-03, 6.68418154e-02, 8.91427455e-02, 2.86122760e-01,
            5.96581806e-03, 4.64913709e-03, 2.03487286e-04])>

        Parameters
        ----------
            arr_x: np.array
                grid on x where to compute the PDF
            arr_q2: np.array
                grid on q^2 where to compute the PDF
        Returns
        -------
            pdf: tensor
                grid of results ([members], [number of points], flavour)
        """
        a_x = float_me(arr_x)
        a_q2 = float_me(arr_q2)
        return self.xfxQ2_allpid(a_x, a_q2)
Exemplo n.º 7
0
Arquivo: me.py Projeto: N3PDF/pdfflow
    prop = propagator_w(sa1) * propagator_w(sb2)
    coup = tf.square(mw / tf.pow(stw, 1.5))
    rmcom = coup / prop

    # Compute the amplitude
    # W-boson, so only Left-Left
    amplitude = zA(pa, pb) * zB(p1, p2)
    amp2 = tf.math.real(amplitude * tf.math.conj(amplitude))

    me_res = 2.0 * amp2 * rmcom
    return me_res


# Leading Order matrix element
factor_lo = float_me(1.0702411577062499e-4)  # there is no alpha_s, alpha_ew computed at Mz val


@tf.function(input_signature=4 * [TFLOAT4])
def qq_h_lo(pa, pb, p1, p2):
    """ Computes the LO q Q -> Q q H (WW->H) """
    return factor_lo * partial_lo(pa, pb, p1, p2)


@tf.function(input_signature=[TFLOAT4] * 5)
def partial_qq_h_qQg(pa, pb, p1, p2, p3):
    """ Gluon radiated from leg pa-p1 """
    pa13 = pa - (p1 + p3)
    sa13 = dot_product(pa13, pa13)
    sb2 = -2.0 * dot_product(pb, p2)
    prop = propagator_w(sa13) * propagator_w(sb2)
Exemplo n.º 8
0
    def __init__(self,
                 grid,
                 i=0,
                 total=0,
                 compile_functions=True,
                 alpha_s=False):
        name_sg = f"grid_{i}"
        self.alpha_s = alpha_s
        if alpha_s:
            name_sg += "_alpha"
        self.name_sg = name_sg
        super().__init__(name=f"Parent_{name_sg}")
        q2min = min(grid.q2)
        q2max = max(grid.q2)
        self.log_q2min = float_me(np.log(q2min))
        self.log_q2max = float_me(np.log(q2max))

        # Save grid shape information
        self.s_q2 = int_me(grid.q2.size)

        # Insert a padding at the beginning and the end
        log_q2pad = np.pad(np.log(grid.q2), 1, mode="edge")
        log_q2pad[0] *= 0.99
        log_q2pad[-1] *= 1.01

        self.padded_q2 = float_me(log_q2pad)

        # Depending on whether it is an alphs_s grid or a pdf grid
        # we might need to change some options

        compilation_options = OPT.copy()

        if alpha_s:
            # the grid is sized (q.size), pad it with 0s
            self.padded_grid = float_me(np.pad(grid.grid, (1, 1)))

            if i == 0:
                self.fn_interpolation = alphas_first_subgrid
            elif i == (total - 1):
                self.fn_interpolation = alphas_last_subgrid
            else:
                self.fn_interpolation = alphas_inner_subgrid

            # Change the function signature to that of alpha_s
            compilation_options[
                "input_signature"] = ALPHAS_GRID_FUNCTION_SIGNATURE
        else:
            # If this is a pdf grid, save also the x information
            xmin = min(grid.x)
            xmax = max(grid.x)
            self.log_xmin = float_me(np.log(xmin))
            self.log_xmax = float_me(np.log(xmax))

            self.s_x = int_me(grid.x.size)

            log_xpad = np.pad(np.log(grid.x), 1, mode="edge")
            log_xpad[0] *= 0.99
            log_xpad[-1] *= 1.01

            self.padded_x = float_me(log_xpad)

            # Finally parse the grid
            # the grid is sized (x.size * q.size, flavours)
            reshaped_grid = grid.grid.reshape(grid.x.size, grid.q2.size, -1)

            # and pad it with 0s in x and q
            padded_grid = np.pad(reshaped_grid, ((1, 1), (1, 1), (0, 0)))
            # flatten the x and q dimensions again and store it
            self.padded_grid = float_me(padded_grid.reshape(
                -1, grid.flav.size))

            # Depending on the index of the grid, select with interpolation function should be run
            if i == 0:
                self.fn_interpolation = first_subgrid
            elif i == (total - 1):
                self.fn_interpolation = last_subgrid
            else:
                self.fn_interpolation = inner_subgrid

        if compile_functions:
            self.fn_interpolation = tf.function(self.fn_interpolation,
                                                **compilation_options)
Exemplo n.º 9
0
def main(pdfname, pid, no_tex=True):
    """Testing PDFflow vs LHAPDF performance."""
    mpl.rcParams['text.usetex'] = no_tex
    mpl.rcParams['savefig.format'] = 'pdf'
    mpl.rcParams['figure.figsize'] = [11, 5.5]
    mpl.rcParams['axes.titlesize'] = 20
    mpl.rcParams['ytick.labelsize'] = 17
    mpl.rcParams['xtick.labelsize'] = 17
    mpl.rcParams['legend.fontsize'] = 14

    import pdfflow.pflow as pdf

    p = pdf.mkPDF(pdfname, DIRNAME)
    l_pdf = lhapdf.mkPDF(pdfname)
    name = '\_'.join(pdfname.split('_'))

    s = time.time()
    p.trace()
    print("\nPDFflow\n\tBuilding graph time: %f\n" % (time.time() - s))

    fig = plt.figure()
    gs = fig.add_gridspec(nrows=1, ncols=2, wspace=0.05)
    ax = fig.add_subplot(gs[0])
    x = np.logspace(-12, 0, 10000, dtype=float)
    q2 = np.array([1.65, 1.7, 4.92, 1e2, 1e3, 1e4, 1e5, 1e6, 2e6],
                  dtype=float)**2
    for iq2 in q2:
        vl = np.array([l_pdf.xfxQ2(pid, ix, iq2) for ix in x])
        vp = p.py_xfxQ2(pid, float_me(x), float_me([iq2] * len(x)))

        ax.plot(x,
                np.abs(vp - vl) / (np.abs(vl) + EPS),
                label=r'$Q=%s$' % sci_notation(iq2**0.5, 2))

    ax.hlines(1e-3,
              plt.xlim()[0],
              plt.xlim()[1],
              linestyles='dotted',
              color='red')
    ax.set_xscale('log')
    ax.set_yscale('log')
    ax.set_xlim([1e-12, 1.])
    ax.set_ylim([EPS, .01])

    ax = set_ticks(ax, -12, 0, 13, 'x', 4)
    ax.tick_params(axis='x',
                   which='both',
                   direction='in',
                   bottom=True,
                   labelbottom=True,
                   top=True,
                   labeltop=False)

    ax = set_ticks(ax, -15, -3, 16, 'y')
    ax.tick_params(axis='y',
                   which='both',
                   direction='in',
                   left=True,
                   labelleft=True,
                   right=True,
                   labelright=False)

    ax.set_title(r'%s, flav = %d' % (name, pid))
    ylabel = r'$\displaystyle{r_{i}(x,Q)}$' if no_tex else '$r_{i}$(x,Q)'
    ax.set_ylabel(ylabel, fontsize=20)
    ax.set_xlabel(r'$x$', fontsize=17)
    ax.legend(frameon=False,
              ncol=2,
              loc='upper right',
              bbox_to_anchor=(1.02, 0.9))

    x = np.array([1e-10, 1e-9, 1.1e-9, 5e-7, 1e-6, 1e-4, 1e-2, 0.5, 0.99],
                 dtype=float)
    q2 = np.logspace(1, 7, 10000, dtype=float)**2
    ax = fig.add_subplot(gs[1])
    for ix in x:
        s_time = time.time()
        vl = np.array([l_pdf.xfxQ2(pid, ix, iq2) for iq2 in q2])
        l_time = time.time()
        vp = p.py_xfxQ2(pid, float_me([ix] * len(q2)), float_me(q2))
        p_time = time.time()

        ax.plot(q2**0.5,
                np.abs(vp - vl) / (np.abs(vl) + EPS),
                label=r'$x=%s$' % sci_notation(ix, 1))

    ax.hlines(1e-3,
              plt.xlim()[0],
              plt.xlim()[1],
              linestyles='dotted',
              color='red')
    ax.set_xscale('log')
    ax.set_yscale('log')
    ax.set_xlim([1, 1e7])
    ax.set_ylim([EPS, .01])

    ax = set_ticks(ax, 1, 7, 9, 'x')
    ax.tick_params(axis='x',
                   which='both',
                   direction='in',
                   top=True,
                   labeltop=False,
                   bottom=True,
                   labelbottom=True)

    ax = set_ticks(ax, -15, -3, 16, 'y')
    ax.tick_params(axis='y',
                   which='both',
                   direction='in',
                   right=True,
                   labelright=False,
                   left=True,
                   labelleft=False)

    ax.set_title(r'%s, flav = %d' % (name, pid))
    ax.set_xlabel(r'$Q$', fontsize=17)
    ax.legend(frameon=False,
              ncol=2,
              loc='upper right',
              bbox_to_anchor=(1.02, 0.9))
    plt.savefig('diff_%s_flav%d.pdf' % (pdfname.replace('/', '-'), pid),
                bbox_inches='tight',
                dpi=250)
    plt.close()

    print("\nDry run time comparison:")
    print("{:>10}:{:>15.8f}".format("lhapdf", l_time - s_time))
    print("{:>10}:{:>15.8f}".format("pdfflow", p_time - l_time))
Exemplo n.º 10
0
def lowq2_extrapolation(
    a_x, a_q2, padded_x, s_x, padded_q2, s_q2, actual_padded,
):
    """
    Extrapolation in low q2 regime

    Parameters
    ----------
        a_x: tf.tensor of shape [None]
            query of values of log(x)
        a_q2: tf.tensor of shape [None]
            query of values of log(q2)
        padded_x: tf.tensor of shape [None]
            value for all the knots on the x axis
            padded with one zero at the beginning and one at the end to
            avoid out of range errors when queryingpoints near boundaries
        s_x: tf.tensor of shape []
            size of x knots tensor without padding
        padded_q2: tf.tensor of shape [None]
            value for all the knots on the q2 axis
            padded with one zero at the beginning and one at the end to
            avoid out of range errors when querying points near boundaries
        s_q2: tf.tensor of shape []
            size of q2 knots tensor without padding
        actual_padded: tf.tensor of shape [None,None]
            pdf values: first axis is the flattened padded (q2,x) grid,
            second axis is needed pid column (dimension depends on the query)
    """

    corn_q2 = tf.stack([padded_q2[1], 1.01 * padded_q2[1]], 0)

    x, q2 = tf.meshgrid(a_x, corn_q2)

    s = tf.size(a_x, out_type=DTYPEINT)

    fq2Min = interpolate(
        tf.reshape(x, [-1]),
        tf.reshape(q2, [-1]),
        padded_x,
        s_x,
        padded_q2,
        s_q2,
        actual_padded,
    )

    fq2Min1 = fq2Min[s:]
    fq2Min = fq2Min[:s]

    a_q2 = tf.math.exp(a_q2)
    corn_q2 = tf.math.exp(corn_q2[:1])

    mask = tf.math.abs(fq2Min) >= 1e-5
    anom = tf.where(
        mask, tf.maximum(float_me(-2.5), (fq2Min1 - fq2Min) / fq2Min / 0.01), fone
    )
    corn_q2 = tf.expand_dims(corn_q2, 1)
    a_q2 = tf.expand_dims(a_q2, 1)

    return fq2Min * tf.math.pow(
        a_q2 / corn_q2, anom * a_q2 / corn_q2 + 1.0 - a_q2 / corn_q2
    )
Exemplo n.º 11
0
def test_float_me():
    res = float_me(4.0)
    assert res.dtype == DTYPE
Exemplo n.º 12
0
    TECH_CUT,
    shat_min,
    s_in,
    higgs_mass,
    pt2_cut,
    rdistance,
    deltaycut,
    m2jj_cut,
)
import spinors

# Control flags
UNIT_PHASE = False

# Constants
tfpi = float_me(3.1415926535897932385)
costhmax = fone
costhmin = float_me(-1.0) * fone
phimin = fzero
phimax = float_me(2.0) * tfpi


# Jet separation
@tf.function
def rapidity_dif(p1, p2):
    """ Computes the rapidity difference between p1 and p2
    y = 1/2*log(E+z / E-z)
    """
    num = (p1[0, :] + p1[3, :]) * (p2[0, :] - p2[3, :])
    den = (p1[0, :] - p1[3, :]) * (p2[0, :] + p2[3, :])
    return float_me(0.5) * tf.math.log(num / den)