def datatable_to_dataframe(table, split_texts_in_lines=False, **kwargs):
    """
    Create a pandas dataframe using datatable <table> and joining all texts in the individual cells.
    """
    import pandas as pd
    
    n_rows = len(table)
    if n_rows == 0:
        raise ValueError('data table must contain rows')
    
    n_cols = len(table[0])
    if n_cols == 0:
        raise ValueError('data table must contain columns')
    
    col_series = OrderedDict()
    zfill_n = len(str(n_cols + 1))
    for i in range(n_cols):
        col_data = []
        for j in range(n_rows):
            if split_texts_in_lines:
                cell_str = create_text_from_lines(put_texts_in_lines(table[j][i]), **kwargs)
            else:
                cell_str = join_texts(table[j][i], **kwargs)
                
            col_data.append(cell_str)
        
        ser = pd.Series(col_data)
        ser.name = 'col' + str(i + 1).zfill(zfill_n)
        col_series[ser.name] = ser
    
    return pd.DataFrame(col_series)
Exemplo n.º 2
0
def datatable_to_dataframe(table, split_texts_in_lines=False, **kwargs):
    """
    Create a pandas dataframe using datatable <table> and joining all texts in the individual cells.
    """
    import pandas as pd

    n_rows = len(table)
    if n_rows == 0:
        raise ValueError('data table must contain rows')

    n_cols = len(table[0])
    if n_cols == 0:
        raise ValueError('data table must contain columns')

    col_series = OrderedDict()
    zfill_n = len(str(n_cols + 1))
    for i in range(n_cols):
        col_data = []
        for j in range(n_rows):
            if split_texts_in_lines:
                cell_str = create_text_from_lines(
                    put_texts_in_lines(table[j][i]), **kwargs)
            else:
                cell_str = join_texts(table[j][i], **kwargs)

            col_data.append(cell_str)

        ser = pd.Series(col_data)
        ser.name = 'col' + str(i + 1).zfill(zfill_n)
        col_series[ser.name] = ser

    return pd.DataFrame(col_series)
Exemplo n.º 3
0
import re

# a (possibly malformed) population number + space + start of city name
pttrn_table_row_beginning = re.compile(r'^[\d Oo][\d Oo]{2,} +[A-Z???]')

# 1. try to find the top row of the table
texts_cols_1_2_per_line = split_texts_by_positions(texts_cols_1_2,
                                                   pos_y,
                                                   DIRECTION_VERTICAL,
                                                   alignment='middle',
                                                   enrich_with_positions=True)

# go through the texts line per line
for line_texts, (line_top, line_bottom) in texts_cols_1_2_per_line:
    line_str = join_texts(line_texts)
    if pttrn_table_row_beginning.match(
            line_str):  # check if the line content matches the given pattern
        top_y = line_top
        break
else:
    top_y = 0

# hints for a footer text box
words_in_footer = ('anzeige', 'annahme', 'ala')

# 2. try to find the bottom row of the table
min_footer_text_height = median_text_height * 1.5
min_footer_y_pos = p['height'] * 0.7
# get all texts in the lower 30% of the page that have are at least 50% bigger than the median textbox height
bottom_texts = [
Exemplo n.º 4
0
        # find out the item description text boxes
        # we apply several criteria for that:
        # 1. the candidate text box `t` is not the item number text box
        # 2. it is in the same row (with a slight offset of -2)
        # 3. it is right to the item number text box (with a slight offset of -5)
        # 4. it contains text
        # 5. it is left to the grades
        descr_texts = [
            t for t in sec_texts
            if t is not t_item and item_y - 2 <= t['top'] < item_y_end -
            2 and t['left'] > t_item['right'] - 5 and t['value'].strip()
            and t_item['left'] <= t['left'] < begin_grade_col
        ]

        # join the text in the text boxes
        item_descr = join_texts(descr_texts)

        # find empty score boxes which approx. show the position of the boxes that contain the grades in the image
        # we apply several criteria for that:
        # 1. the candidate text box `t` is in the same row (with a slight offset of -2)
        # 2. it is an empty text box
        # 3. it's x coordinate is within the range of the grade columns
        empty_grade_boxes = [
            t for t in sec_texts
            if item_y - 2 <= t['top'] < item_y_end - 2 and t['value'].strip()
            == '' and begin_grade_col <= t['left'] <= end_grade_col
        ]

        if len(empty_grade_boxes) == 4:  # there are not always grades given
            # parse the empty text boxes that have the approx. position of the checkboxes
            box_fill_ratios = {}
Exemplo n.º 5
0
def do_tablextract(self, g, pdf_path, p_num):  # g is globals
    print('Starting tablextract')
    camelot_method = 'lattice'  #stream/lattice

    if self.pdf_type == 'normal':
        print(pdf_path, p_num)
        if 'tabula' in g.text_pdf_method:
            tables = read_pdf(
                pdf_path,
                pages=[p_num],
                multiple_tables=True,
                java_options=
                '-Dsun.java2d.cmm=sun.java2d.cmm.kcms.KcmsServiceProvider')
            for i in range(len(tables)):
                table_file_path = '%s/%s-%s' % (self.tables_folder_tabula,
                                                p_num, i)
                # tables[i].fillna('').to_html('%s.html' % (table_file_path))
                try:
                    tables[i].fillna('').to_csv('%s.csv' % (table_file_path),
                                                encoding='utf-8')
                except:
                    tables[i].fillna('').to_csv('%s.csv' % (table_file_path),
                                                encoding='cp1252')
        if 'camelot' in g.text_pdf_method:
            tables = camelot.read_pdf(pdf_path,
                                      flavor=camelot_method,
                                      pages=str(p_num))
            for i in range(len(tables)):
                # print(tables[0].parsing_report)
                table_file_path = '%s/%s-%s.csv' % (self.tables_folder_camelot,
                                                    p_num, i)
                tables.export(table_file_path, f='csv', compress=False)

    else:
        if self.doc_type == 'image':
            # trying camelot
            print('Doing camelot-stream')
            camelot_method = 'stream'  #stream/lattice
            tables = camelot.read_pdf(pdf_path,
                                      flavor=camelot_method,
                                      pages=str(p_num))
            for i in range(len(tables)):
                # print(tables[0].parsing_report)
                table_file_path = '%s/%s-%s.csv' % (self.tables_folder_camelot,
                                                    p_num, i)
                tables.export(table_file_path, f='csv', compress=False)

        # Trying pdftabextract
        filename = os.path.basename(pdf_path).split('.')[0].split('/')[0]
        DATAPATH = self.images_folder  # 'data/'
        INPUT_XML = '%s/%s.xml' % (self.images_folder, filename)
        os.system("pdftohtml -c -hidden -xml -enc UTF-8  -f %s -l %s %s %s" %
                  (p_num, p_num, pdf_path, INPUT_XML))
        # os.system("pdftohtml -c -hidden -f %s -l %s %s %s/%s.html" % (p_num, p_num, pdf_path, self.html_folder, filename))

        # Load the XML that was generated with pdftohtml
        xmltree, xmlroot = read_xml(INPUT_XML)
        # parse it and generate a dict of pages
        pages = parse_pages(xmlroot)
        # print(pages[p_num]['texts'][0])
        p = pages[p_num]

        # Detecting lines
        if self.doc_type == 'image':
            imgfilebasename = '%s-%s_1' % (filename, p_num)
            imgfile = self.file_path
        elif self.doc_type == 'pdf':
            try:
                imgfilebasename = '%s-%s_1' % (filename, p_num)
                imgfile = '%s/%s-%s_1.png' % (DATAPATH, filename, p_num)
            except:
                imgfilebasename = filename + str(p_num)
                imgfile = '%s/%s-%s_1.png' % (DATAPATH, filename, p_num)

        print("\npage %d: detecting lines in image file '%s'..." %
              (p_num, imgfile))

        # create an image processing object with the scanned page
        iproc_obj = imgproc.ImageProc(imgfile)

        # calculate the scaling of the image file in relation to the text boxes coordinate system dimensions
        page_scaling_x = iproc_obj.img_w / p['width']  # scaling in X-direction
        page_scaling_y = iproc_obj.img_h / p[
            'height']  # scaling in Y-direction

        # detect the lines
        lines_hough = iproc_obj.detect_lines(canny_kernel_size=3,
                                             canny_low_thresh=50,
                                             canny_high_thresh=150,
                                             hough_rho_res=1,
                                             hough_theta_res=np.pi / 500,
                                             hough_votes_thresh=round(
                                                 0.2 * iproc_obj.img_w))
        print("> found %d lines" % len(lines_hough))

        # helper function to save an image
        def save_image_w_lines(iproc_obj, imgfilebasename):
            img_lines = iproc_obj.draw_lines(orig_img_as_background=True)
            img_lines_file = os.path.join(
                self.temp_folder, '%s-lines-orig.png' % imgfilebasename)

            print("> saving image with detected lines to '%s'" %
                  img_lines_file)
            cv2.imwrite(img_lines_file, img_lines)

        save_image_w_lines(iproc_obj, imgfilebasename)

        # find rotation or skew
        # the parameters are:
        # 1. the minimum threshold in radians for a rotation to be counted as such
        # 2. the maximum threshold for the difference between horizontal and vertical line rotation (to detect skew)
        # 3. an optional threshold to filter out "stray" lines whose angle is too far apart from the median angle of
        #    all other lines that go in the same direction (no effect here)
        rot_or_skew_type, rot_or_skew_radians = iproc_obj.find_rotation_or_skew(
            radians(0.5),  # uses "lines_hough"
            radians(1),
            omit_on_rot_thresh=radians(0.5))

        # rotate back or deskew text boxes
        needs_fix = True
        if rot_or_skew_type == ROTATION:
            print("> rotating back by %f°" % -degrees(rot_or_skew_radians))
            rotate_textboxes(p, -rot_or_skew_radians, pt(0, 0))
        elif rot_or_skew_type in (SKEW_X, SKEW_Y):
            print("> deskewing in direction '%s' by %f°" %
                  (rot_or_skew_type, -degrees(rot_or_skew_radians)))
            deskew_textboxes(p, -rot_or_skew_radians, rot_or_skew_type,
                             pt(0, 0))
        else:
            needs_fix = False
            print("> no page rotation / skew found")

        if needs_fix:
            # rotate back or deskew detected lines
            lines_hough = iproc_obj.apply_found_rotation_or_skew(
                rot_or_skew_type, -rot_or_skew_radians)

            save_image_w_lines(iproc_obj, imgfilebasename + '-repaired')

        # save repaired XML (i.e. XML with deskewed textbox positions)

        repaired_xmlfile = os.path.join(self.temp_folder,
                                        filename + '.repaired.xml')

        print("saving repaired XML file to '%s'..." % repaired_xmlfile)
        xmltree.write(repaired_xmlfile)

        # Clustering vertical lines
        # cluster the detected *vertical* lines using find_clusters_1d_break_dist as simple clustering function
        # (break on distance MIN_COL_WIDTH/2)
        # additionally, remove all cluster sections that are considered empty
        # a cluster is considered empty when the number of text boxes in it is below 10% of the median number of text boxes
        # per cluster section
        MIN_COL_WIDTH = g.MIN_COL_WIDTH  # minimum width of a column in pixels, measured in the scanned pages
        vertical_clusters = iproc_obj.find_clusters(
            imgproc.DIRECTION_VERTICAL,
            find_clusters_1d_break_dist,
            remove_empty_cluster_sections_use_texts=p[
                'texts'],  # use this page's textboxes
            remove_empty_cluster_sections_n_texts_ratio=0.1,  # 10% rule
            remove_empty_cluster_sections_scaling=
            page_scaling_x,  # the positions are in "scanned image space" -> we scale them to "text box space"
            dist_thresh=MIN_COL_WIDTH / 2)
        print("> found %d clusters" % len(vertical_clusters))

        # draw the clusters
        img_w_clusters = iproc_obj.draw_line_clusters(
            imgproc.DIRECTION_VERTICAL, vertical_clusters)
        save_img_file = os.path.join(
            self.temp_folder, '%s-vertical-clusters.png' % imgfilebasename)
        print("> saving image with detected vertical clusters to '%s'" %
              save_img_file)
        cv2.imwrite(save_img_file, img_w_clusters)

        # Clustering horizontal lines
        # cluster the detected *horizontal* lines using find_clusters_1d_break_dist as simple clustering function
        # (break on distance MIN_ROW_WIDTH/2)
        # additionally, remove all cluster sections that are considered empty
        # a cluster is considered empty when the number of text boxes in it is below 10% of the median number of text boxes
        # per cluster section
        MIN_ROW_WIDTH = g.MIN_ROW_WIDTH  # minimum width of a row in pixels, measured in the scanned pages
        horizontal_clusters = iproc_obj.find_clusters(
            imgproc.DIRECTION_HORIZONTAL,
            find_clusters_1d_break_dist,
            remove_empty_cluster_sections_use_texts=p[
                'texts'],  # use this page's textboxes
            remove_empty_cluster_sections_n_texts_ratio=0.1,  # 10% rule
            remove_empty_cluster_sections_scaling=
            page_scaling_y,  # the positions are in "scanned image space" -> we scale them to "text box space"
            dist_thresh=MIN_ROW_WIDTH / 2)
        print("> found %d clusters" % len(horizontal_clusters))

        # draw the clusters
        img_w_clusters_hoz = iproc_obj.draw_line_clusters(
            imgproc.DIRECTION_HORIZONTAL, horizontal_clusters)
        save_img_file = os.path.join(
            self.temp_folder, '%s-horizontal-clusters.png' % imgfilebasename)
        print("> saving image with detected vertical clusters to '%s'" %
              save_img_file)
        cv2.imwrite(save_img_file, img_w_clusters_hoz)

        page_colpos = np.array(
            calc_cluster_centers_1d(vertical_clusters)) / page_scaling_x
        print('found %d column borders:' % len(page_colpos))
        print(page_colpos)

        page_rowpos = np.array(
            calc_cluster_centers_1d(horizontal_clusters)) / page_scaling_y
        print('found %d row borders:' % len(page_rowpos))
        print(page_rowpos)

        # right border of the second column
        col2_rightborder = page_colpos[2]

        # calculate median text box height
        median_text_height = np.median([t['height'] for t in p['texts']])

        # get all texts in the first two columns with a "usual" textbox height
        # we will only use these text boxes in order to determine the line positions because they are more "stable"
        # otherwise, especially the right side of the column header can lead to problems detecting the first table row
        text_height_deviation_thresh = median_text_height / 2
        texts_cols_1_2 = [
            t for t in p['texts'] if t['right'] <= col2_rightborder
            and abs(t['height'] -
                    median_text_height) <= text_height_deviation_thresh
        ]

        # get all textboxes' top and bottom border positions
        borders_y = border_positions_from_texts(texts_cols_1_2,
                                                DIRECTION_VERTICAL)

        # break into clusters using half of the median text height as break distance
        clusters_y = find_clusters_1d_break_dist(
            borders_y, dist_thresh=median_text_height / 2)
        clusters_w_vals = zip_clusters_and_values(clusters_y, borders_y)

        # for each cluster, calculate the median as center
        pos_y = calc_cluster_centers_1d(clusters_w_vals)
        pos_y.append(p['height'])

        print('number of line positions:', len(pos_y))

        pttrn_table_row_beginning = re.compile(
            r'^[\d Oo][\d Oo]{2,} +[A-ZÄÖÜ]')

        # 1. try to find the top row of the table
        texts_cols_1_2_per_line = split_texts_by_positions(
            texts_cols_1_2,
            pos_y,
            DIRECTION_VERTICAL,
            alignment='middle',
            enrich_with_positions=True)

        # go through the texts line per line
        for line_texts, (line_top, line_bottom) in texts_cols_1_2_per_line:
            line_str = join_texts(line_texts)
            if pttrn_table_row_beginning.match(
                    line_str
            ):  # check if the line content matches the given pattern
                top_y = line_top
                break
        else:
            top_y = 0

        print('Top_y: %s' % top_y)

        # hints for a footer text box
        words_in_footer = ('anzeige', 'annahme', 'ala')

        # 2. try to find the bottom row of the table
        min_footer_text_height = median_text_height * 1.5
        min_footer_y_pos = p['height'] * 0.7
        # get all texts in the lower 30% of the page that have are at least 50% bigger than the median textbox height
        bottom_texts = [
            t for t in p['texts'] if t['top'] >= min_footer_y_pos
            and t['height'] >= min_footer_text_height
        ]
        bottom_texts_per_line = split_texts_by_positions(
            bottom_texts,
            pos_y + [p['height']],  # always down to the end of the page
            DIRECTION_VERTICAL,
            alignment='middle',
            enrich_with_positions=True)
        # go through the texts at the bottom line per line
        page_span = page_colpos[-1] - page_colpos[0]
        min_footer_text_width = page_span * 0.8
        for line_texts, (line_top, line_bottom) in bottom_texts_per_line:
            line_str = join_texts(line_texts)
            has_wide_footer_text = any(t['width'] >= min_footer_text_width
                                       for t in line_texts)
            # check if there's at least one wide text or if all of the required words for a footer match
            if has_wide_footer_text or all_a_in_b(words_in_footer, line_str):
                bottom_y = line_top
                break
        else:
            bottom_y = p['height']

        print(bottom_y)
        print(pos_y)

        # finally filter the line positions so that only the lines between the table top and bottom are left
        print(page_rowpos)
        print("> page %d: %d lines between [%f, %f]" %
              (p_num, len(page_rowpos), top_y, bottom_y))

        def subsequent_pairs(l):
            """
            Return subsequent pairs of values in a list <l>, i.e. [(x1, x2), (x2, x3), (x3, x4), .. (xn-1, xn)] for a
            list [x1 .. xn]
            """
            return [(l[i - 1], v) for i, v in enumerate(l) if i > 0]

        # page_rowpos = [y for y in pos_y if top_y <= y <= bottom_y]
        print(page_colpos, page_rowpos)
        grid = make_grid_from_positions(page_colpos, page_rowpos)
        # print(grid)
        n_rows = len(grid)
        n_cols = len(grid[0])
        print("> page %d: grid with %d rows, %d columns" %
              (p_num, n_rows, n_cols))

        page_grids_file = os.path.join(self.temp_folder,
                                       filename + '_pagegrids.json')
        print("saving page grids JSON file to '%s'" % page_grids_file)
        save_page_grids({p_num: grid}, page_grids_file)

        datatable = fit_texts_into_grid(p['texts'], grid)
        df = datatable_to_dataframe(datatable)
        # print(df.head(n=2))

        csv_output_file = os.path.join(self.tables_folder, filename + '.csv')
        print("saving extracted data to '%s'" % csv_output_file)
        df.to_csv(csv_output_file, index=False, header=False)
        # find out the item description text boxes
        # we apply several criteria for that:
        # 1. the candidate text box `t` is not the item number text box
        # 2. it is in the same row (with a slight offset of -2)
        # 3. it is right to the item number text box (with a slight offset of -5)
        # 4. it contains text
        # 5. it is left to the grades
        descr_texts = [t for t in sec_texts
                       if t is not t_item
                       and item_y - 2 <= t['top'] < item_y_end - 2
                       and t['left'] > t_item['right'] - 5
                       and t['value'].strip()
                       and t_item['left'] <= t['left'] < begin_grade_col]

        # join the text in the text boxes
        item_descr = join_texts(descr_texts)

        # find empty score boxes which approx. show the position of the boxes that contain the grades in the image
        # we apply several criteria for that:
        # 1. the candidate text box `t` is in the same row (with a slight offset of -2)
        # 2. it is an empty text box
        # 3. it's x coordinate is within the range of the grade columns
        empty_grade_boxes = [t for t in sec_texts
                             if item_y - 2 <= t['top'] < item_y_end - 2
                             and t['value'].strip() == ''
                             and begin_grade_col <= t['left'] <= end_grade_col]

        if len(empty_grade_boxes) == 4:   # there are not always grades given
            # parse the empty text boxes that have the approx. position of the checkboxes
            box_fill_ratios = {}
            # go through the positions of the checkbox rectangles
 clusters_y = find_clusters_1d_break_dist(borders_y, dist_thresh=median_text_height/2)
 clusters_w_vals = zip_clusters_and_values(clusters_y, borders_y)
 
 # for each cluster, calculate the median as center
 pos_y = calc_cluster_centers_1d(clusters_w_vals)
 pos_y.append(p['height'])
 
 ### make some additional filtering of the row positions ###
 # 1. try to find the top row of the table
 texts_cols_1_2_per_line = split_texts_by_positions(texts_cols_1_2, pos_y, DIRECTION_VERTICAL,
                                                    alignment='middle',
                                                    enrich_with_positions=True)
 
 # go through the texts line per line
 for line_texts, (line_top, line_bottom) in texts_cols_1_2_per_line:
     line_str = join_texts(line_texts)
     if pttrn_table_row_beginning.match(line_str):  # check if the line content matches the given pattern
         top_y = line_top
         break
 else:
     top_y = 0
 
 # 2. try to find the bottom row of the table
 min_footer_text_height = median_text_height * 1.5
 min_footer_y_pos = p['height'] * 0.7
 # get all texts in the lower 30% of the page that have are at least 50% bigger than the median textbox height
 bottom_texts = [t for t in p['texts']
                 if t['top'] >= min_footer_y_pos and t['height'] >= min_footer_text_height]
 bottom_texts_per_line = split_texts_by_positions(bottom_texts,
                                                  pos_y + [p['height']],   # always down to the end of the page
                                                  DIRECTION_VERTICAL,