Exemplo n.º 1
0
def test_consistency_random_kb(pdkb, kb):
    assert isinstance(pdkb, PDKB)

    NUM_RUNS = 10000
    fluents = map(Literal, 'pqrst')
    agents = list(range(1, 4))
    added = []
    for i in range(0, NUM_RUNS):
        print >> sys.stderr, str(i) + " ",
        kb.reset()
        pdkb.reset()
        rmls = [
            random_rml(4, agents, fluents),
            random_rml(3, agents, fluents),
            random_rml(2, agents, fluents),
            ]
        
        # Only add the RMLs if they are consistent
        check_consistency = PDKB(4, agents, fluents)
        check_consistency.update(set(rmls))
        if check_consistency.is_consistent():
            assert pdkb.is_consistent()
            kb_copy = kb.copy()
            pdkb_copy = pdkb.copy()
            pdkb.update(set(rmls))            
            kb.update(set(rmls))

            rml = compare(pdkb, kb)
            if isinstance(rml, RML):
                kb_copy.restrict(rml)
                pdkb_copy.restrict(rml)
                kb.restrict(rml)
                pdkb.restrict(rml)
                print "before = " + str(kb_copy)
                print "before = " + str(pdkb_copy)
                print "\t add " + str(rmls)
                print "\t after = " + str(kb)
                print "\t after = " + str(pdkb)
                sys.exit()
Exemplo n.º 2
0
    def generate_kbs():
        numRMLs = num_agents #num_agents * depth * 2
        closed_kb = PDKB(depth, agents, fluents)
        indexed_kb = IndexedPDKB(depth, agents, fluents)
        count = 0
        while count < numRMLs:
            next_rml = random_rml(depth, agents, fluents)
            if not closed_kb.query(neg(next_rml)):
                closed_kb.add_rml(next_rml)
                indexed_kb.expand(set([next_rml]))
                count += 1

        inf_kb = [] #INF.PDKB2INF(closed_kb)
        return (inf_kb, closed_kb, indexed_kb)
Exemplo n.º 3
0
def get_size_and_time(num_agents, depth, fluents):

    agents = range(1, num_agents + 1)

    def generate_kbs():
        numRMLs = num_agents #num_agents * depth * 2
        closed_kb = PDKB(depth, agents, fluents)
        indexed_kb = IndexedPDKB(depth, agents, fluents)
        count = 0
        while count < numRMLs:
            next_rml = random_rml(depth, agents, fluents)
            if not closed_kb.query(neg(next_rml)):
                closed_kb.add_rml(next_rml)
                indexed_kb.expand(set([next_rml]))
                count += 1

        inf_kb = [] #INF.PDKB2INF(closed_kb)
        return (inf_kb, closed_kb, indexed_kb)
    
    '''
    print
    print "Generating %d PDKBs..." % NUM_PDKBS
    kbs = []
    infs = []
    indexed_kbs = []
    progress = 10
    trial = 1

    for i in range(NUM_PDKBS):
        if trial > progress:
            print "%d%%" % progress
            progress += 10
        trial += 1

        (inf_kb, closed_kb, indexed_kb) = generate_kbs()
        kbs.append(closed_kb)
        indexed_kbs.append(indexed_kb)
        infs.append(inf_kb)

    print

    print "Closing PDKBs..."
    closed_kbs = [kb.copy() for kb in kbs]
    closure_time = []
    progress = 10
    trial = 1
    for kb in closed_kbs:
        if trial > progress:
            print "%d%%" % progress
            progress += 10
        trial += 1
        start = now()
        kb.logically_close()
        assert kb.is_consistent()
        closure_time.append(now() - start)
    print

    print "Computing INFs..."
    for kb in kbs:
        start = now()
        infs.append(INF.PDKB2INF(kb))
        inf_time.append(now() - start)
    '''

    def run_queries(index, rml, infs_kb, closed_kb, indexed_kb):
        start = now()
        #ans1 = infs_kb.query(rml)
        inf_query = 0.0 #now() - start
        start = now()
        #ans2 = rml in closed_kbs[index].rmls
        ans2 = closed_kb.query(rml)
        closed_query = now() - start
        start = now()
        ans3 = indexed_kb.query(rml)
        indexed_query = now() - start

        ans1 = ans2
        assert ans1 == ans2
        assert ans2 == ans3

        # Copy the KBs to run update commands without changing the original KBs
        copy_kb = closed_kb.copy()
        copy_indexed_kb = indexed_kb.copy()

        #start = now()
        # INF update is not yet implemented...
        inf_update = 0.0 #now() - start
        start = now()
        copy_kb.update(set([rml]))
        closed_update = now() - start
        start = now()
        copy_indexed_kb.update(set([rml]))
        indexed_update = now() - start

        return (ans1, ans2, ans3, inf_query, closed_query, indexed_query, inf_update, closed_update, indexed_update)

    #print "Performing random misc queries..."
    for i in range(NUM_PDKBS):
    #for i in range(0):
        (infs_kb, closed_kb, indexed_kb) = generate_kbs()
        for j in range(QUERIES_PER_PDKB):

            rml = random_rml(closed_kb.depth, closed_kb.agents, closed_kb.props)
            (ans1, ans2, ans3, inf_query, closed_query, indexed_query, inf_update, closed_update, indexed_update) = run_queries(i, rml, infs_kb, closed_kb, indexed_kb)
            #(inf_update, closed_update, indexed_update) =

            #csv.append("%d,%d,%d,%d,%d,%d,%d,%d,%f,%f,%f,%f,%f,%s" %
            #           (len(kbs[i].agents), kbs[i].depth, len(kbs[i].props), len(kbs[i].rmls), len(closed_kbs[i].rmls), infs[i].size(), closed_kbs[i].size(), kbs[i].size(),
            #            inf_time[i], closure_time[i], inf_query, closed_query, indexed_query, str(ans1)))

    print "Performing random successful queries..."
    times = [0.0,0.0,0.0,0.0,0.0,0.0]
    for i in range(NUM_PDKBS):

        (infs_kb, closed_kb, indexed_kb) = generate_kbs()

        for j in range(QUERIES_PER_PDKB):

            # Get a random RML from the PDKB
            rml = random.choice(list(closed_kb.rmls))
            # Get the closed set
            #entailed = list(kd_closure(rml))
            # Pick a random element
            #rml = random.choice(entailed)
            #(infs_kb, closed_kb, indexed_kb) = generate_kbs()
            (ans1, ans2, ans3, inf_query, closed_query, indexed_query, inf_update,  closed_update, indexed_update) = run_queries(i, rml, infs_kb, closed_kb, indexed_kb)

            assert ans1 == ans2
            assert ans2 == ans3

            times[0] += inf_query
            times[1] += closed_query
            times[2] += indexed_query
            times[3] += inf_update
            times[4] += closed_update
            times[5] += indexed_update

            #csv_yes.append("%d,%d,%d,%d,%d,%d,%d,%d,%f,%f,%f,%f,%f,%s" %
            #               (len(kbs[i].agents), kbs[i].depth, len(kbs[i].props), len(kbs[i].rmls), len(closed_kbs[i].rmls), infs[i].size(), closed_kbs[i].size(), kbs[i].size(),
            #                inf_time[i], closure_time[i], inf_query, closed_query, indexed_query, str(ans1)))

    sizes = [0.0, 0.0, 0.0]
    print "Performing random unsuccessful queries..."
    for i in range(NUM_PDKBS):

        (infs_kb, closed_kb, indexed_kb) = generate_kbs()

        sizes[0] += 0.0 #infs_kb.size()
        sizes[1] += closed_kb.size()
        sizes[2] += indexed_kb.size()

        for j in range(QUERIES_PER_PDKB):


            going = True
            while going:
                rml = random_rml(closed_kb.depth, closed_kb.agents, closed_kb.props)
                if rml not in closed_kb.rmls:
                    going = False
            (ans1, ans2, ans3, inf_query, closed_query, indexed_query, inf_update, closed_update, indexed_update) = run_queries(i, rml, infs_kb, closed_kb, indexed_kb)

            assert ans1 == ans2
            assert ans2 == ans3

            times[0] += inf_query
            times[1] += closed_query
            times[2] += indexed_query
            times[3] += inf_update
            times[4] += closed_update
            times[5] += indexed_update

            #csv_no.append("%d,%d,%d,%d,%d,%d,%d,%d,%f,%f,%f,%f,%f,%s" %
            #              (len(kbs[i].agents), kbs[i].depth, len(kbs[i].props), len(kbs[i].rmls), len(closed_kbs[i].rmls), infs[i].size(), closed_kbs[i].size(), kbs[i].size(),
            #               inf_time[i], closure_time[i], inf_query, closed_query, indexed_query, str(ans1)))


    times[0] /= float(NUM_PDKBS * QUERIES_PER_PDKB * 2)
    times[1] /= float(NUM_PDKBS * QUERIES_PER_PDKB * 2)
    times[2] /= float(NUM_PDKBS * QUERIES_PER_PDKB * 2)
    times[3] /= float(NUM_PDKBS * QUERIES_PER_PDKB * 2)
    times[4] /= float(NUM_PDKBS * QUERIES_PER_PDKB * 2)
    times[5] /= float(NUM_PDKBS * QUERIES_PER_PDKB * 2)

    #sizes.append(float(sum([inf.size() for inf in infs])) / float(NUM_PDKBS))
    #sizes.append(float(sum([kb.size() for kb in kbs])) / float(NUM_PDKBS))
    #sizes.append(float(sum([kb.size() for kb in indexed_kbs])) / float(NUM_PDKBS))
    sizes[0] /= float(NUM_PDKBS)
    sizes[1] /= float(NUM_PDKBS)
    sizes[2] /= float(NUM_PDKBS)

    print "\nDone!\n"

    return (times, sizes)