Exemplo n.º 1
0
def generator_rootdatafile_baselinesub(filename,
                                       batch_size=1,
                                       n_sample=4320,
                                       tree_name="waveforms",
                                       branch_name="wf1",
                                       n_wf_baseline=1000,
                                       margin_lsb=8,
                                       samples_around=4):
    gen_baseline = generator_rootdatafile(filename,
                                          batch_size=n_wf_baseline,
                                          n_sample=n_sample,
                                          tree_name=tree_name,
                                          branch_name=branch_name)
    waveforms = next(gen_baseline)
    baseline = get_baseline(waveforms,
                            margin_lsb=margin_lsb,
                            samples_around=samples_around)
    assert np.isfinite(baseline)
    del waveforms
    return generator_rootdatafile(filename,
                                  batch_size=batch_size,
                                  n_sample=n_sample,
                                  tree_name=tree_name,
                                  branch_name=branch_name,
                                  baseline=baseline)
Exemplo n.º 2
0
 def get_baselines(self, n_waveform=1000, margin_lsb=8, samples_around=4):
     wfs_for_baseline = next(
         self.get_generator_waveform(batch_size=n_waveform))
     baselines = []
     for pix in range(self.n_channel):
         baselines.append(
             get_baseline(wfs_for_baseline[:, :, pix],
                          margin_lsb=margin_lsb,
                          samples_around=samples_around))
         if not np.isfinite(baselines[-1]):
             print('ERROR in baseline calculation for pixel', pix)
             baselines[-1] = 0
         print('baseline for pixel', pix, ':', baselines[-1])
     self.reset()
     return np.array(baselines)
Exemplo n.º 3
0
def g2_data(model,
            root_datafile,
            batch_size=100,
            n_sample=4320,
            margin_lsb=8,
            samples_around=5,
            shifts=range(-500, 501),
            xlim=None,
            parallel_iterations=10,
            plot="show",
            g2_datafile=None,
            n_bin_per_sample=8):
    from matplotlib import pyplot as plt

    #get baselines
    gen_baseline_pix1 = generator_rootdatafile(root_datafile,
                                               batch_size=10000,
                                               n_sample=n_sample,
                                               tree_name="waveforms",
                                               branch_name="wf1")
    waveforms_pix1 = next(gen_baseline_pix1)
    baseline_pix1 = get_baseline(waveforms_pix1,
                                 margin_lsb=margin_lsb,
                                 samples_around=samples_around)
    assert np.isfinite(baseline_pix1)
    del waveforms_pix1
    gen_baseline_pix2 = generator_rootdatafile(root_datafile,
                                               batch_size=1000,
                                               n_sample=n_sample,
                                               tree_name="waveforms",
                                               branch_name="wf2")
    waveforms_pix2 = next(gen_baseline_pix2)
    baseline_pix2 = get_baseline(waveforms_pix2,
                                 margin_lsb=margin_lsb,
                                 samples_around=samples_around)
    assert np.isfinite(baseline_pix2)
    del waveforms_pix2

    # create correlator
    wf_correlation = Correlation(shifts=shifts,
                                 n_batch=batch_size,
                                 n_sample=n_sample,
                                 sample_type=tf.float32,
                                 scope="wf",
                                 parallel_iterations=parallel_iterations)
    # compute g2 for wf
    print("compute g2 on waveforms")
    gen_wf_pix1 = generator_rootdatafile(root_datafile,
                                         batch_size=batch_size,
                                         n_sample=n_sample,
                                         tree_name="waveforms",
                                         branch_name="wf1",
                                         baseline=baseline_pix1)
    gen_wf_pix2 = generator_rootdatafile(root_datafile,
                                         batch_size=batch_size,
                                         n_sample=n_sample,
                                         tree_name="waveforms",
                                         branch_name="wf2",
                                         baseline=baseline_pix2)
    sum_wf1, sum_wf2, sum_wf11, sum_wf12, sum_wf22, count_wf = wf_correlation(
        gen_wf_pix1, gen_wf_pix2)
    del wf_correlation

    # create correlator
    pe_correlation = Correlation(shifts=shifts,
                                 n_batch=batch_size,
                                 n_sample=n_sample * n_bin_per_sample,
                                 sample_type=tf.float32,
                                 scope="pe",
                                 parallel_iterations=parallel_iterations)

    sum_pe1, sum_pe2, sum_pe11, sum_pe12, sum_pe22, count_pe = None, None, None, None, None, None
    if model is not None:
        # create extractor
        extractor = Extractor(n_sample)
        extractor.load(model)

        # compute g2 for extracted pe
        print("compute g2 on extracted pe")
        gen_pe_pred_pix1 = extractor.predict_wf_generator(
            generator_rootdatafile(root_datafile,
                                   batch_size=batch_size,
                                   n_sample=n_sample,
                                   tree_name="waveforms",
                                   branch_name="wf1",
                                   baseline=baseline_pix1))
        gen_pe_pred_pix2 = extractor.predict_wf_generator(
            generator_rootdatafile(root_datafile,
                                   batch_size=batch_size,
                                   n_sample=n_sample,
                                   tree_name="waveforms",
                                   branch_name="wf2",
                                   baseline=baseline_pix2))
        sum_pe1, sum_pe2, sum_pe11, sum_pe12, sum_pe22, count_pe = pe_correlation(
            gen_pe_pred_pix1, gen_pe_pred_pix2)
        del extractor
        del pe_correlation

    if g2_datafile is not None:
        np.savez(
            g2_datafile,
            shift_in_sample=shifts,
            n_sample_wf=n_sample,
            sum1_wf=sum_wf1,
            sum2_wf=sum_wf2,
            sum12_wf=sum_wf12,
            sum11_wf=sum_wf11,
            sum22_wf=sum_wf22,
            shift_in_bins=shifts,
            n_sample_pb=n_sample * 8,
            sum1_pb=sum_pe1,
            sum2_pb=sum_pe2,
            sum12_pb=sum_pe12,
            sum11_pb=sum_pe11,
            sum22_pb=sum_pe22,
            baseline_pix0=baseline_pix1,
            baseline_pix1=baseline_pix2,
        )

    # plot
    if plot is not None:
        print("plotting")
        n_sample_tot = count_wf[np.array(shifts) == 0][0]
        n_wf_tot = int(n_sample_tot / n_sample)
        time_tot_us = n_sample_tot * 4e-3
        title = "g2 with {} waveforms ({:.3f} ms)".format(
            n_wf_tot, time_tot_us * 1e-3)
        fig = plt.figure(figsize=(8, 6))
        g2_wf = count_wf * sum_wf12 / (sum_wf1 * sum_wf2)
        g2_pe = count_pe * sum_pe12 / (sum_pe1 * sum_pe2)
        shift_wf_ns = 4. * np.array(shifts)
        shift_pe_ns = .5 * np.array(shifts)
        plt.plot(shift_wf_ns, g2_wf, label='g2 from waveforms')
        if model is not None:
            plt.plot(shift_pe_ns, g2_pe, label='g2 from CNN')
        plt.xlabel('delay [ns]')
        plt.ylabel(r'$g^2(\tau)$')
        if xlim is not None:
            plt.xlim(xlim)
        plt.legend()
        plt.grid()
        plt.title(title)
        plt.tight_layout()
        if plot == "show":
            plt.show()
        else:
            fig.savefig(plot)
            print(plot, "image created")
Exemplo n.º 4
0
def g2_wf_data(root_datafile,
               batch_size=100,
               n_sample=4320,
               margin_lsb=8,
               samples_around=5,
               shifts=range(-500, 501),
               xlim=None,
               parallel_iterations=100,
               plot="show",
               method="tf"):
    from matplotlib import pyplot as plt

    gen_baseline_pix1 = generator_rootdatafile(root_datafile,
                                               batch_size=1000,
                                               n_sample=n_sample,
                                               tree_name="waveforms",
                                               branch_name="wf1")
    waveforms_pix1 = next(gen_baseline_pix1)
    baseline_pix1 = get_baseline(waveforms_pix1,
                                 margin_lsb=margin_lsb,
                                 samples_around=samples_around)
    assert np.isfinite(baseline_pix1)
    del waveforms_pix1
    gen_baseline_pix2 = generator_rootdatafile(root_datafile,
                                               batch_size=1000,
                                               n_sample=n_sample,
                                               tree_name="waveforms",
                                               branch_name="wf2")
    waveforms_pix2 = next(gen_baseline_pix2)
    baseline_pix2 = get_baseline(waveforms_pix2,
                                 margin_lsb=margin_lsb,
                                 samples_around=samples_around)
    assert np.isfinite(baseline_pix2)
    del waveforms_pix2

    # compute g2 for wf
    print("compute g2 on waveforms")
    gen_wf_pix1 = generator_rootdatafile(root_datafile,
                                         batch_size=batch_size,
                                         n_sample=n_sample,
                                         tree_name="waveforms",
                                         branch_name="wf1",
                                         baseline=baseline_pix1)
    gen_wf_pix2 = generator_rootdatafile(root_datafile,
                                         batch_size=batch_size,
                                         n_sample=n_sample,
                                         tree_name="waveforms",
                                         branch_name="wf2",
                                         baseline=baseline_pix2)

    # create correlator
    if method == "tf":
        wf_correlation = Correlation(shifts=shifts,
                                     n_batch=batch_size,
                                     n_sample=n_sample,
                                     sample_type=tf.float32,
                                     scope="wf",
                                     parallel_iterations=parallel_iterations)
        sum_wf1, sum_wf2, _, sum_wf12, _, count_wf = wf_correlation(
            gen_wf_pix1, gen_wf_pix2)
        del wf_correlation
    elif method == "numpy":
        sum_wf1, sum_wf2, sum_wf12, _, _, count_wf = correlate_numpy(
            gen_wf_pix1, gen_wf_pix2, shifts=shifts)
    else:
        ValueError("method must be \"tf\" or \"numpy\"")
    # plot
    print("plotting")
    n_sample_tot = count_wf[np.array(shifts) == 0][0]
    n_wf_tot = int(n_sample_tot / n_sample)
    time_tot_us = n_sample_tot * 4e-3
    title = "g2 with {} waveforms ({:.3f} ms)".format(n_wf_tot,
                                                      time_tot_us * 1e-3)
    fig = plt.figure(figsize=(4, 3))
    g2_wf = count_wf * sum_wf12 / (sum_wf1 * sum_wf2)
    shift_wf_ns = 4. * np.array(shifts)
    plt.plot(shift_wf_ns, g2_wf, label='g2 from waveforms')
    plt.xlabel('delay [ns]')
    plt.ylabel(r'$g^2(\tau)$')
    if xlim is not None:
        plt.xlim(xlim)
    plt.legend()
    plt.grid()
    plt.title(title)
    plt.tight_layout()
    if plot == "show":
        plt.show()
    else:
        fig.savefig(plot)
        print(plot, "image created")
Exemplo n.º 5
0
def g2_andrii_toy(model,
                  datafile_pix1,
                  datafile_pix2,
                  batch_size=100,
                  n_sample=2500,
                  margin_lsb=8,
                  samples_around=5,
                  shifts=range(-500, 501),
                  xlim=None,
                  parallel_iterations=10,
                  plot="show",
                  n_bin_per_sample=8):
    #get baselines
    gen_baseline_pix1 = generator_andrii_toy(datafile_pix1,
                                             batch_size=1000,
                                             n_sample=n_sample,
                                             n_bin_per_sample=n_bin_per_sample)
    waveforms_pix1, _ = next(gen_baseline_pix1)
    baseline_pix1 = get_baseline(waveforms_pix1,
                                 margin_lsb=margin_lsb,
                                 samples_around=samples_around)
    assert np.isfinite(baseline_pix1)
    del waveforms_pix1
    gen_baseline_pix2 = generator_andrii_toy(datafile_pix2,
                                             batch_size=1000,
                                             n_sample=n_sample,
                                             n_bin_per_sample=n_bin_per_sample)
    waveforms_pix2, _ = next(gen_baseline_pix2)
    baseline_pix2 = get_baseline(waveforms_pix2,
                                 margin_lsb=margin_lsb,
                                 samples_around=samples_around)
    assert np.isfinite(baseline_pix2)
    del waveforms_pix2

    # create correlator
    wf_correlation = Correlation(shifts=shifts,
                                 n_batch=batch_size,
                                 n_sample=n_sample,
                                 sample_type=tf.float32,
                                 scope="wf",
                                 parallel_iterations=parallel_iterations)
    # compute g2 for wf
    print("compute g2 on waveforms")
    gen_wf_pix1 = generator_wf(
        generator_andrii_toy(datafile_pix1,
                             batch_size=batch_size,
                             n_sample=n_sample,
                             baseline=baseline_pix1))
    gen_wf_pix2 = generator_wf(
        generator_andrii_toy(datafile_pix2,
                             batch_size=batch_size,
                             n_sample=n_sample,
                             baseline=baseline_pix2))
    sum_wf1, sum_wf2, _, sum_wf12, _, count_wf = wf_correlation(
        gen_wf_pix1, gen_wf_pix2)
    del wf_correlation

    # create correlator
    pe_correlation = Correlation(shifts=shifts,
                                 n_batch=batch_size,
                                 n_sample=n_sample * n_bin_per_sample,
                                 sample_type=tf.float32,
                                 scope="pe",
                                 parallel_iterations=parallel_iterations)

    # compute g2 for MC truth
    print("compute g2 on MC truth")
    gen_pe_truth_pix1 = generator_pe_truth(
        generator_andrii_toy(datafile_pix1,
                             batch_size=batch_size,
                             n_sample=n_sample,
                             baseline=baseline_pix1))
    gen_pe_truth_pix2 = generator_pe_truth(
        generator_andrii_toy(datafile_pix2,
                             batch_size=batch_size,
                             n_sample=n_sample,
                             baseline=baseline_pix2))
    sum_pe1_truth, sum_pe2_truth, _, sum_pe12_truth, _, count_pe_truth = pe_correlation(
        gen_pe_truth_pix1, gen_pe_truth_pix2)

    # create extractor
    extractor_toy_andrii = Extractor(n_sample)
    extractor_toy_andrii.load(model)

    # compute g2 for extracted pe
    print("compute g2 on extracted pe")
    gen_pe_pred_pix1 = extractor_toy_andrii.predict_generator(
        generator_andrii_toy(datafile_pix1,
                             batch_size=batch_size,
                             n_sample=n_sample,
                             baseline=baseline_pix1))
    gen_pe_pred_pix2 = extractor_toy_andrii.predict_generator(
        generator_andrii_toy(datafile_pix2,
                             batch_size=batch_size,
                             n_sample=n_sample,
                             baseline=baseline_pix2))
    sum_pe1, sum_pe2, _, sum_pe12, _, count_pe = pe_correlation(
        gen_pe_pred_pix1, gen_pe_pred_pix2)
    del extractor_toy_andrii
    del pe_correlation

    # plot
    print("plotting")
    n_sample_tot = count_wf[np.array(shifts) == 0][0]
    n_wf_tot = int(n_sample_tot / n_sample)
    time_tot_us = n_sample_tot * 4e-3
    title = "g2 with " + str(n_wf_tot) + " waveforms"
    title += " (" + str(time_tot_us * 1e-3) + " ms)"
    fig = plt.figure(figsize=(8, 6))
    g2_wf = count_wf * sum_wf12 / (sum_wf1 * sum_wf2)
    g2_pe = count_pe * sum_pe12 / (sum_pe1 * sum_pe2)
    g2_pe_truth = count_pe_truth * sum_pe12_truth / (sum_pe1_truth *
                                                     sum_pe2_truth)
    shift_wf_ns = 4. * np.array(shifts)
    shift_pe_ns = .5 * np.array(shifts)
    plt.plot(shift_wf_ns, g2_wf, '+-', label='g2 from waveforms')
    plt.plot(shift_pe_ns, g2_pe, '+-', label='g2 from CNN')
    plt.plot(shift_pe_ns, g2_pe_truth, '+-', label='g2 from MC truth')
    plt.xlabel('delay [ns]')
    plt.ylabel(r'$g^2(\tau)$')
    if xlim is not None:
        plt.xlim(xlim)
    plt.legend()
    plt.grid()
    plt.title(title)
    if plot == "show":
        plt.show()
    else:
        fig.savefig(plot)
        print(plot, "image created")