Exemplo n.º 1
0
def create_random_database(nmin=20, nts=None, natoms=2):
    """
    create a database for test purposes
    """
    from pele.storage import Database
    import numpy as np

    if nts is None:
        nts = nmin
    db = Database()
    # generate random structures
    minlist = []
    for i in range(nmin):
        coords = np.random.uniform(-1, 1, natoms * 3)
        e = float(i)  # make up a fake energy
        minlist.append(db.addMinimum(e, coords))
    # add random transition states
    for i in range(nts):
        j1, j2 = 1, 1
        while j1 == j2:
            j1, j2 = np.random.randint(0, nmin, 2)
        m1, m2 = minlist[j1], minlist[j2]
        coords = np.random.uniform(-1, 1, natoms * 3)
        e = float(j1 + j2)
        db.addTransitionState(e, coords, m1, m2)
    return db
Exemplo n.º 2
0
def create_random_database(nmin=20, nts=None, natoms=2):
    """
    create a database for test purposes
    """
    from pele.storage import Database
    import numpy as np

    if nts is None:
        nts = nmin
    db = Database()
    # generate random structures
    minlist = []
    for i in range(nmin):
        coords = np.random.uniform(-1, 1, natoms * 3)
        e = float(i)  # make up a fake energy
        minlist.append(db.addMinimum(e, coords))
    # add random transition states
    for i in range(nts):
        j1, j2 = 1, 1
        while j1 == j2:
            j1, j2 = np.random.randint(0, nmin, 2)
        m1, m2 = minlist[j1], minlist[j2]
        coords = np.random.uniform(-1, 1, natoms * 3)
        e = float(j1 + j2)
        db.addTransitionState(e, coords, m1, m2)
    return db
Exemplo n.º 3
0
def create_random_database(nmin=20, nts=20):
    db = Database()
    
    for i in xrange(nmin):
        energy = np.random.uniform(-1., 10.)
        x = [energy]
        db.addMinimum(energy, x)
    
    manager = ConnectManager(db, verbosity=0)
    for i in xrange(nts/2):
        m1, m2 = manager.get_connect_job("gmin")
        energy = max([m1.energy, m2.energy]) + np.random.uniform(1,10)
        x = [energy]
        db.addTransitionState(energy, x, m1, m2)
    for i in xrange(nts/2):
        m1, m2 = manager.get_connect_job("random")
        energy = max([m1.energy, m2.energy]) + np.random.uniform(1,5)
        x = [energy]
        db.addTransitionState(energy, x, m1, m2)
    
    return db
Exemplo n.º 4
0
def create_random_database(nmin=20, nts=20):
    db = Database()

    for i in range(nmin):
        energy = np.random.uniform(-1., 10.)
        x = [energy]
        db.addMinimum(energy, x)

    manager = ConnectManager(db, verbosity=0)
    for i in range(old_div(nts, 2)):
        m1, m2 = manager.get_connect_job("gmin")
        energy = max([m1.energy, m2.energy]) + np.random.uniform(1, 10)
        x = [energy]
        db.addTransitionState(energy, x, m1, m2)
    for i in range(old_div(nts, 2)):
        m1, m2 = manager.get_connect_job("random")
        energy = max([m1.energy, m2.energy]) + np.random.uniform(1, 5)
        x = [energy]
        db.addTransitionState(energy, x, m1, m2)

    return db
Exemplo n.º 5
0
class TestConnectManager(unittest.TestCase):
    def setUp(self):
        self.db = Database()
        self.nminima = 10
        for i in range(self.nminima):
            e = float(i)
            self.db.addMinimum(e, [e])

    def connect_min(self, m1, m2):
        e = np.random.uniform(0,100)
        self.db.addTransitionState(e, [e], m1, m2)

    def test_gmin(self):
        manager = ConnectManager(self.db, strategy="gmin")
        m0 = self.db.minima()[0]
        
        for i in range(5):
            m1, m2 = manager.get_connect_job()
            self.assertEqual(m1, m0)
            self.connect_min(m1, m2)
    
    def test_random(self):
        manager = ConnectManager(self.db, strategy="random")
        
        for i in range(5):
            m1, m2 = manager.get_connect_job()
            self.connect_min(m1, m2)
        
    def test_combine(self):
        minima = self.db.minima()
        i = 5
        for m1, m2 in zip(minima[:i-1], minima[1:i]):
            self.connect_min(m1, m2)
        for m1, m2 in zip(minima[i:], minima[i+1:]):
            self.connect_min(m1, m2)

        # at this point the minima should be in two disconnected groups
        g = database2graph(self.db)
        self.assertEqual(len(list(nx.connected_components(g))), 2)
            
        manager = ConnectManager(self.db, strategy="combine")
        m1, m2 = manager.get_connect_job()
        self.connect_min(m1, m2)
        
        # they should all be connected now
        g = database2graph(self.db)
        self.assertEqual(len(list(nx.connected_components(g))), 1)
        
    def test_untrap(self):
        # first connect them all randomly
        manager = ConnectManager(self.db, strategy="random")
        while True:
            try:
                m1, m2 = manager.get_connect_job()
            except manager.NoMoreConnectionsError:
                break
            self.connect_min(m1, m2)
        
        for i in range(5):
            try:
                m1, m2 = manager.get_connect_job(strategy="untrap")
            except manager.NoMoreConnectionsError:
                break
            self.connect_min(m1, m2)
Exemplo n.º 6
0
class TestDB(unittest.TestCase):
    def setUp(self):
        self.db = Database()
        self.nminima = 10
        for i in range(self.nminima):
            e = float(i)
            self.db.addMinimum(e, [e])
        
        
        self.nts = 3
        self.db.addTransitionState(0., [0.], self.db.minima()[0], self.db.minima()[1], eigenval=0., eigenvec=[0.])
        self.db.addTransitionState(0., [0.], self.db.minima()[1], self.db.minima()[2], eigenval=0., eigenvec=[0.])
        self.db.addTransitionState(0., [0.], self.db.minima()[0], self.db.minima()[2], eigenval=0., eigenvec=[0.])

    def test_size(self):
        self.assertEqual(len(self.db.minima()), self.nminima)
        
    def test_energy(self):
        m = self.db.minima()[0]
        self.assertEqual(m.energy, 0.)

    def test_coords(self):
        m = self.db.minima()[0]
        self.assertEqual(m.coords, [0.])

    def test_sizets(self):
        self.assertEqual(len(self.db.transition_states()), self.nts)
    def test_energyts(self):
        ts = self.db.transition_states()[0]
        self.assertEqual(ts.energy, 0.)

    def test_coordsts(self):
        ts = self.db.transition_states()[0]
        self.assertEqual(ts.coords, [0.])
    
    def test_remove_minimum(self):
        m = self.db.minima()[0]
        self.db.removeMinimum(m)
        self.assertEqual(len(self.db.minima()), self.nminima-1)
        self.assertNotIn(m, self.db.minima())
        
        # m should have 2 minima.  both of those should be gone
        self.assertEqual(len(self.db.transition_states()), self.nts-2)

    def test_remove_ts(self):
        ts = self.db.transition_states()[0]
        self.db.remove_transition_state(ts)
        self.assertEqual(self.db.number_of_transition_states(), self.nts-1)
        self.assertNotIn(ts, self.db.transition_states())
        
        # m should have 2 minima.  both of those should be gone
        self.assertEqual(self.db.number_of_minima(), self.nminima)


    def test_getTransitionState(self):
        m1 = self.db.minima()[0]
        m2 = self.db.minima()[1]
        m3 = self.db.minima()[-1]
        self.assertIsNotNone(self.db.getTransitionState(m1, m2))
        self.assertIsNone(self.db.getTransitionState(m1, m3))
    
    def test_getMinimum(self):
        m = self.db.minima()[0]
        self.assertEqual(m, self.db.getMinimum(m._id))
        
    def test_minimum_adder(self):
        ma = self.db.minimum_adder()
        ma(101., [101.])
        self.assertEqual(len(self.db.minima()), self.nminima+1)
    
    def test_merge_minima(self):
        m1 = self.db.minima()[0]
        m2 = self.db.minima()[1]
        self.db.mergeMinima(m1, m2)
        self.assertEqual(len(self.db.minima()), self.nminima-1)
        # transition states shouldn't be deleted
        self.assertEqual(len(self.db.transition_states()), self.nts)
    
    def test_number_of_minima(self):
        self.assertEqual(self.nminima, self.db.number_of_minima())
    
    def test_number_of_transition_states(self):
        self.assertEqual(self.nts, self.db.number_of_transition_states())
    
    def test_highest_energy_minimum(self):
        m1 = self.db._highest_energy_minimum()
        m2 = self.db.minima()[-1]
        self.assertEqual(m1, m2)
    
    def test_maximum_number_of_minima(self):
        m = self.db.addMinimum(-1., [-1.], max_n_minima=self.nminima)
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIn(m, self.db.minima())

    def test_maximum_number_of_minima_largestE(self):
        e = float(self.nminima + 1)
        m = self.db.addMinimum(e, [e], max_n_minima=self.nminima)
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIsNone(m)
        
        #ensure the highest energy minimum is still in the database
        mmax = self.db._highest_energy_minimum()
        self.assertEqual(mmax.energy, float(self.nminima-1))
        
    def test_maximum_number_of_minima_minima_adder(self):
        ma = self.db.minimum_adder(max_n_minima=self.nminima)
        m = ma(-1., [-1.])
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIn(m, self.db.minima())

    def test_getTSfromID(self):
        ts = self.db.transition_states()[0]
        ts1 = self.db.getTransitionStateFromID(ts._id)
        self.assertEqual(ts, ts1)

    def test_property(self):
        # add some system properties and ensure they were added correctly
        self.db.add_property("natoms", 10)
        p = self.db.get_property("natoms")
        self.assertEqual(p.value(), 10)
        self.db.add_property("eps", 2.1)
        p = self.db.get_property("eps")
        self.assertEqual(p.value(), 2.1)
        self.db.add_property("author", "Jake")
        p = self.db.get_property("author")
        self.assertEqual(p.value(), "Jake")
        self.db.add_property("data", [1, 2])
        p = self.db.get_property("data")
        self.assertEqual(p.value(), [1, 2])
        
        # assert that the not set values are None
        p = self.db.get_property("natoms")
        self.assertIsNone(p.string_value)
        self.assertIsNone(p.float_value)
        self.assertIsNone(p.pickle_value)

        
        p = self.db.get_property("noprop")
        self.assertIsNone(p)

        props = self.db.properties(as_dict=True)
        self.assertIsInstance(props, dict)
        self.assertDictContainsSubset(dict(natoms=10), props)
        self.assertEqual(len(props.items()), 4)
        
        props = self.db.properties(as_dict=False)
        self.assertIn(("natoms", 10), [p.item() for p in props])
        self.assertEqual(len(props), 4)

    def test_property_dtype(self):
        # add some system properties and ensure they were added correctly
        self.db.add_property("natoms", 10, dtype="int")
        p = self.db.get_property("natoms")
        self.assertEqual(p.value(), 10)
        self.db.add_property("eps", 2.1, dtype="float")
        p = self.db.get_property("eps")
        self.assertEqual(p.value(), 2.1)
        self.db.add_property("author", "Jake", dtype="string")
        p = self.db.get_property("author")
        self.assertEqual(p.value(), "Jake")
        self.db.add_property("data", [1, 2], dtype="pickle")
        p = self.db.get_property("data")
        self.assertEqual(p.value(), [1, 2])

    def test_bad_property(self):
        self.db.add_property("natoms", 10, dtype="string")
        p = self.db.get_property("natoms")
        self.assertEqual(p.value(), "10")

    def test_property_overwrite_false(self):
        self.db.add_property("natoms", 10)
        # overwriting with the same value should not raise error
        self.db.add_property("natoms", 10, overwrite=False) 
        # overwriting with a different value should raise error
        with self.assertRaises(RuntimeError):
            self.db.add_property("natoms", 11, overwrite=False)
    
    
    def test_add_properties(self):
        props = dict(natoms=10, author="jake")
        self.db.add_properties(props)
        for name, value in props.iteritems():
            p = self.db.get_property(name)
            self.assertEqual(p.value(), value)
    
    def test_load_wrong_schema(self):
        current_dir = os.path.dirname(__file__)
        dbname = current_dir + "/lj6_schema1.sqlite"
        with self.assertRaises(IOError):
            db = Database(dbname, createdb=False)
    
    def test_load_right_schema(self):
        current_dir = os.path.dirname(__file__)
        dbname = current_dir + "/lj6_schema2.sqlite"
        db = Database(dbname, createdb=False)
    
    def test_invalid(self):
        m = self.db.minima()[0]
        self.assertFalse(m.invalid)
        m.invalid = True
        self.db.session.commit()
        self.assertTrue(m.invalid)
        
        # now with a ts
        m = self.db.transition_states()[0]
        self.assertFalse(m.invalid)
        m.invalid = True
        self.db.session.commit()
        self.assertTrue(m.invalid)
    
    def test_user_data(self):
        m = self.db.minima()[0]
        m.user_data = dict(key="value")
        self.db.session.commit()
        v = m.user_data["key"]
        
        # now with a transition state
        m = self.db.transition_states()[0]
        m.user_data = dict(key="value")
        self.db.session.commit()
        v = m.user_data["key"]
Exemplo n.º 7
0
class TestConnectManager(unittest.TestCase):
    def setUp(self):
        self.db = Database()
        self.nminima = 10
        for i in range(self.nminima):
            e = float(i)
            self.db.addMinimum(e, [e])

    def connect_min(self, m1, m2):
        e = np.random.uniform(0, 100)
        self.db.addTransitionState(e, [e], m1, m2)

    def test_gmin(self):
        manager = ConnectManager(self.db, strategy="gmin")
        m0 = self.db.minima()[0]

        for i in range(5):
            m1, m2 = manager.get_connect_job()
            self.assertEqual(m1, m0)
            self.connect_min(m1, m2)

    def test_random(self):
        manager = ConnectManager(self.db, strategy="random")

        for i in range(5):
            m1, m2 = manager.get_connect_job()
            self.connect_min(m1, m2)

    def test_combine(self):
        minima = self.db.minima()
        i = 5
        for m1, m2 in zip(minima[:i - 1], minima[1:i]):
            self.connect_min(m1, m2)
        for m1, m2 in zip(minima[i:], minima[i + 1:]):
            self.connect_min(m1, m2)

        # at this point the minima should be in two disconnected groups
        g = database2graph(self.db)
        self.assertEqual(len(list(nx.connected_components(g))), 2)

        manager = ConnectManager(self.db, strategy="combine")
        m1, m2 = manager.get_connect_job()
        self.connect_min(m1, m2)

        # they should all be connected now
        g = database2graph(self.db)
        self.assertEqual(len(list(nx.connected_components(g))), 1)

    def test_untrap(self):
        # first connect them all randomly
        manager = ConnectManager(self.db, strategy="random")
        while True:
            try:
                m1, m2 = manager.get_connect_job()
            except manager.NoMoreConnectionsError:
                break
            self.connect_min(m1, m2)

        for i in range(5):
            try:
                m1, m2 = manager.get_connect_job(strategy="untrap")
            except manager.NoMoreConnectionsError:
                break
            self.connect_min(m1, m2)
Exemplo n.º 8
0
class TestDB(unittest.TestCase):
    def setUp(self):
        self.db = Database()
        self.nminima = 10
        for i in range(self.nminima):
            e = float(i)
            self.db.addMinimum(e, [e])

        self.nts = 3
        self.db.addTransitionState(0., [0.],
                                   self.db.minima()[0],
                                   self.db.minima()[1],
                                   eigenval=0.,
                                   eigenvec=[0.])
        self.db.addTransitionState(0., [0.],
                                   self.db.minima()[1],
                                   self.db.minima()[2],
                                   eigenval=0.,
                                   eigenvec=[0.])
        self.db.addTransitionState(0., [0.],
                                   self.db.minima()[0],
                                   self.db.minima()[2],
                                   eigenval=0.,
                                   eigenvec=[0.])

    def test_add_minimum(self):
        # add a duplicate minimum and ensure the db doesn't change
        self.db.addMinimum(0, [0])
        self.assertEqual(self.db.number_of_minima(), self.nminima)

    def test_size(self):
        self.assertEqual(len(self.db.minima()), self.nminima)

    def test_energy(self):
        m = self.db.minima()[0]
        self.assertEqual(m.energy, 0.)

    def test_coords(self):
        m = self.db.minima()[0]
        self.assertEqual(m.coords, [0.])

    def test_sizets(self):
        self.assertEqual(len(self.db.transition_states()), self.nts)

    def test_energyts(self):
        ts = self.db.transition_states()[0]
        self.assertEqual(ts.energy, 0.)

    def test_coordsts(self):
        ts = self.db.transition_states()[0]
        self.assertEqual(ts.coords, [0.])

    def test_remove_minimum(self):
        m = self.db.minima()[0]
        self.db.removeMinimum(m)
        self.assertEqual(len(self.db.minima()), self.nminima - 1)
        self.assertNotIn(m, self.db.minima())

        # m should have 2 minima.  both of those should be gone
        self.assertEqual(len(self.db.transition_states()), self.nts - 2)

    def test_remove_ts(self):
        ts = self.db.transition_states()[0]
        self.db.remove_transition_state(ts)
        self.assertEqual(self.db.number_of_transition_states(), self.nts - 1)
        self.assertNotIn(ts, self.db.transition_states())

        # m should have 2 minima.  both of those should be gone
        self.assertEqual(self.db.number_of_minima(), self.nminima)

    def test_getTransitionState(self):
        m1 = self.db.minima()[0]
        m2 = self.db.minima()[1]
        m3 = self.db.minima()[-1]
        self.assertIsNotNone(self.db.getTransitionState(m1, m2))
        self.assertIsNone(self.db.getTransitionState(m1, m3))

    def test_getMinimum(self):
        m = self.db.minima()[0]
        self.assertEqual(m, self.db.getMinimum(m._id))

    def test_minimum_adder(self):
        ma = self.db.minimum_adder()
        ma(101., [101.])
        self.assertEqual(len(self.db.minima()), self.nminima + 1)

    def test_minimum_adder_Ecut(self):
        ma = self.db.minimum_adder(Ecut=0)
        n0 = self.db.number_of_minima()
        ma(101., [101.])
        self.assertEqual(n0, self.db.number_of_minima())
        ma(-101., [-101.])
        self.assertEqual(n0 + 1, self.db.number_of_minima())

    def test_minimum_adder_commit_interval(self):
        ma = self.db.minimum_adder(commit_interval=2)
        # replace db.session.commit with a wrapper that keeps track of how
        # many times it's been called
        self.real_commit = self.db.session.commit
        self.count = 0

        def commit_wrapper():
            self.count += 1
            self.real_commit()

        self.db.session.commit = commit_wrapper
        # commit should be called for the first minimum
        ma(101., [101.])
        self.assertEqual(self.count, 1)
        self.assertEqual(self.nminima + 1, self.db.number_of_minima())
        # commit should not be called for the second minimum
        ma(102., [102.])
        self.assertEqual(self.count, 1)
        self.assertEqual(self.nminima + 2, self.db.number_of_minima())
        # yes for the third, no for the 4th
        ma(103., [103.])
        self.assertEqual(self.count, 2)
        ma(104., [104.])
        self.assertEqual(self.count, 2)
        # commit should be called when minimum adder is deleted
        del ma
        self.assertEqual(self.count, 3)
        self.assertEqual(self.nminima + 4, self.db.number_of_minima())

    def test_merge_minima(self):
        m1 = self.db.minima()[0]
        m2 = self.db.minima()[1]
        self.db.mergeMinima(m1, m2)
        self.assertEqual(len(self.db.minima()), self.nminima - 1)
        # transition states shouldn't be deleted
        self.assertEqual(len(self.db.transition_states()), self.nts)

    def test_number_of_minima(self):
        self.assertEqual(self.nminima, self.db.number_of_minima())

    def test_number_of_transition_states(self):
        self.assertEqual(self.nts, self.db.number_of_transition_states())

    def test_highest_energy_minimum(self):
        m1 = self.db._highest_energy_minimum()
        m2 = self.db.minima()[-1]
        self.assertEqual(m1, m2)

    def test_maximum_number_of_minima(self):
        m = self.db.addMinimum(-1., [-1.], max_n_minima=self.nminima)
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIn(m, self.db.minima())

    def test_maximum_number_of_minima_largestE(self):
        e = float(self.nminima + 1)
        m = self.db.addMinimum(e, [e], max_n_minima=self.nminima)
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIsNone(m)

        #ensure the highest energy minimum is still in the database
        mmax = self.db._highest_energy_minimum()
        self.assertEqual(mmax.energy, float(self.nminima - 1))

    def test_maximum_number_of_minima_minima_adder(self):
        ma = self.db.minimum_adder(max_n_minima=self.nminima)
        m = ma(-1., [-1.])
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIn(m, self.db.minima())

    def test_getTSfromID(self):
        ts = self.db.transition_states()[0]
        ts1 = self.db.getTransitionStateFromID(ts._id)
        self.assertEqual(ts, ts1)

    def test_property(self):
        # add some system properties and ensure they were added correctly
        self.db.add_property("natoms", 10)
        p = self.db.get_property("natoms")
        self.assertEqual(p.value(), 10)
        self.db.add_property("eps", 2.1)
        p = self.db.get_property("eps")
        self.assertEqual(p.value(), 2.1)
        self.db.add_property("author", "Jake")
        p = self.db.get_property("author")
        self.assertEqual(p.value(), "Jake")
        self.db.add_property("data", [1, 2])
        p = self.db.get_property("data")
        self.assertEqual(p.value(), [1, 2])

        # assert that the not set values are None
        p = self.db.get_property("natoms")
        self.assertIsNone(p.string_value)
        self.assertIsNone(p.float_value)
        self.assertIsNone(p.pickle_value)

        p = self.db.get_property("noprop")
        self.assertIsNone(p)

        props = self.db.properties(as_dict=True)
        self.assertIsInstance(props, dict)
        self.assertDictContainsSubset(dict(natoms=10), props)
        self.assertEqual(len(list(props.items())), 4)

        props = self.db.properties(as_dict=False)
        self.assertIn(("natoms", 10), [p.item() for p in props])
        self.assertEqual(len(props), 4)

    def test_property_dtype(self):
        # add some system properties and ensure they were added correctly
        self.db.add_property("natoms", 10, dtype="int")
        p = self.db.get_property("natoms")
        self.assertEqual(p.value(), 10)
        self.db.add_property("eps", 2.1, dtype="float")
        p = self.db.get_property("eps")
        self.assertEqual(p.value(), 2.1)
        self.db.add_property("author", "Jake", dtype="string")
        p = self.db.get_property("author")
        self.assertEqual(p.value(), "Jake")
        self.db.add_property("data", [1, 2], dtype="pickle")
        p = self.db.get_property("data")
        self.assertEqual(p.value(), [1, 2])

    def test_bad_property(self):
        self.db.add_property("natoms", 10, dtype="string")
        p = self.db.get_property("natoms")
        self.assertEqual(p.value(), "10")

    def test_property_overwrite_false(self):
        self.db.add_property("natoms", 10)
        # overwriting with the same value should not raise error
        self.db.add_property("natoms", 10, overwrite=False)
        # overwriting with a different value should raise error
        with self.assertRaises(RuntimeError):
            self.db.add_property("natoms", 11, overwrite=False)

    def test_add_properties(self):
        props = dict(natoms=10, author="jake")
        self.db.add_properties(props)
        for name, value in props.items():
            p = self.db.get_property(name)
            self.assertEqual(p.value(), value)

    def test_load_wrong_schema(self):
        current_dir = os.path.dirname(__file__)
        dbname = current_dir + "/lj6_schema1.sqlite"
        with self.assertRaises(IOError):
            db = Database(dbname, createdb=False)

    def test_load_right_schema(self):
        current_dir = os.path.dirname(__file__)
        dbname = current_dir + "/lj6_schema2.sqlite"
        db = Database(dbname, createdb=False)

    def test_invalid(self):
        m = self.db.minima()[0]
        self.assertFalse(m.invalid)
        m.invalid = True
        self.db.session.commit()
        self.assertTrue(m.invalid)

        # now with a ts
        m = self.db.transition_states()[0]
        self.assertFalse(m.invalid)
        m.invalid = True
        self.db.session.commit()
        self.assertTrue(m.invalid)

    def test_user_data(self):
        m = self.db.minima()[0]
        m.user_data = dict(key="value")
        self.db.session.commit()
        v = m.user_data["key"]

        # now with a transition state
        m = self.db.transition_states()[0]
        m.user_data = dict(key="value")
        self.db.session.commit()
        v = m.user_data["key"]
Exemplo n.º 9
0
                                  delimiter=r'\s+',
                                  skiprows=[0],
                                  names=process_names)
    #only forward process stored to avoid duplicated process
    if min_state_n > 0:
        selected_procs = process_table[process_table['productID'] >= dir]
    else:
        selected_procs = process_table[process_table['productID'] >= 0]
    for i in range(len(selected_procs['productID'])):
        ps_ID = selected_procs['productID'].iloc[i]
        #print ps_ID
        if ps_ID >= max_state_n:
            continue
        try:
            ps = db.addMinimum(states_e[ps_ID], [ps_ID], max_n_minima=-1)
            ts = db.addTransitionState(selected_procs['saddle energy'].iloc[i],
                                       [dir, ps_ID], rs, ps)
        except:
            continue
print "#of states:", len(db.minima())
#for mini in db.minima():
#   print mini.coords
if Emax is None:
    Emax = -1e20
    for ts in db.transition_states():
        if ts.energy > Emax:
            Emax = ts.energy
    print 'max ts:', Emax
#check the structures with energy larger than check_e
#print paras['check_structure']
if check_structure:
    for ts in db.transition_states():