Exemplo n.º 1
0
def get_sims(path='.', depth=1, nuhide=False):
    """Returns all found simulations as object list from all subdirs, not
       following symbolic links.

    Args:
        depth   depth of searching for simulations, default is only one level
                higher directories will be searched
        unhide  unhides all simulation found if True, if False hidden sim will
                stay hidden
    """
    import os
    import numpy as np

    from pencilnew.io import load
    from pencilnew.io import save
    from pencilnew.sim import Simulation
    #from pen.intern.class_simdict import Simdict
    #from intern import get_simdict
    from pencilnew.io import walklevel
    #import intern.debug_breakpoint as debug_breakpoint

    new_sim_list = []
    old_sim_list = False
    print '~ A list of pencil code simulations is generated from this dir downwards, this may take some time..'
    print '~ Symbolic links will not be followed, since this can lead to infinit recursion'

    # get overview of simulations in all lower dirs
    sim_paths = []
    for path, dirs, files in walklevel('.', depth):
        if 'start.in' in files and 'run.in' in files:
            print '# Found Simulation in ' + path
            sim_paths.append(path)

    # take care for each simulation found
    # generate new simulation object for all found simulations and append on new_sim_list
    for path in sim_paths:
        sim = Simulation(path)

        # check if sim.name is already existing as name for a different simulation
        for s in new_sim_list:  # check for double names
            if sim.name == s.name:
                sim.name = sim.name + '#'  # add # to dublicate
                print "?? Warning: Found two simulatoins with the same name: " + sim.path + ' and ' + s.path
                print "?? Changed name of " + sim.path + ' to ' + sim.name

        if old_sim_list:
            if not unhide:  # take over hidden status from previouse simDICT if existing and unhide = False (which is default!)
                for old_sim in old_sim_list:
                    if (sim.path == old_sim.path) and (old_sim.hidden == True):
                        sim.hide()

        ## ADD: auto hide simulations which are not runned yet, i.e. without param.nml
        new_sim_list.append(sim)  # add new sim object to new_sim_list
        sim.export()

    # is new_sim_list empty?
    if new_sim_list == []: print '?? WARNING: no simulations found!'
    save(new_sim_list, 'sim_list', folder='.pen')
    return new_sim_list
Exemplo n.º 2
0
    def export(self):
        """Export simulation object to its root/.pc-dir"""
        from pencilnew.io import save
        if self == False: print('! ERROR: Simulation object is bool object and False!')

        # clean self.tmp_dict
        tmp_dict = self.tmp_dict; self.tmp_dict = {}

        save(self, name='sim', folder=self.pc_dir)

        # restore self.tmp_dict
        self.tmp_dict = tmp_dict
Exemplo n.º 3
0
 def export(self):
     """Export simulation object to its root/.pc-dir"""
     from pencilnew.io import save
     if self == False:
         print('! ERROR: Simulation object is bool object and False!')
     save(self, name='sim', folder=self.pc_dir)
Exemplo n.º 4
0
    def __init__(self,
                 direction='x',
                 trange=[0, -1],
                 sim='.',
                 OVERWRITE=False,
                 quiet=True,
                 jump_distance=0.5):

        from os.path import join
        from os.path import exists as path_exists
        import numpy as np
        from scipy.stats import linregress

        from pencilnew.io import load, save, exists
        from pencilnew.read import pstalk as read_pstalk
        from pencilnew.math.derivatives import simple_centered as derivatives_centered
        from pencilnew.backpack import printProgressBar

        # .. no pstalk file is found
        if not path_exists(join(sim.datadir, 'proc0',
                                'particles_stalker.dat')):
            print(
                '?? WARNING: No particles_stalker.dat found for simulation ' +
                sim.name + '!! Skipping this run!')
            return False

        # check if already existing. if, then load it
        out_path = join(sim.pc_datadir, 'particle', 'diffusion')
        out_name = direction + '_' + str(trange[0]) + '_' + str(trange[1])

        # skip if diffusion already exists
        if not OVERWRITE and exists(name=out_name, folder=out_path):
            self_tmp = load(out_name, folder=out_path)
            for key in [a for a in dir(self_tmp) if not a.startswith('__')]:
                setattr(self, key, getattr(self_tmp, key))

        else:
            #### start calculations ####
            print('##')
            print('## Calculating particle diffusion for "' + sim.name +
                  '" in "' + sim.path + '"')

            print('## reading particle stalker file..')
            pstalk = read_pstalk(sim=sim)
            grid = sim.grid
            dim = sim.dim

            # get time range as index for pstalk dataset
            argmin = np.abs(pstalk.t - trange[0]).argmin()
            if trange[1] < 0.:
                argmax = pstalk.t.argmax()
            else:
                argmax = np.abs(pstalk.t - trange[1]).argmin()
            time_range = pstalk.t[argmin:argmax + 1]

            # modify time range with time_range[0] == 0 by substracting first time entry from time list
            #time_offset = pstalk.t[argmin:argmax][0]
            #time_range = pstalk.t[argmin:argmax]-time_offset

            print('\n## doing the calculation for ' + direction)
            L = getattr(grid, 'L' + direction)  # domain size in direction
            N = getattr(dim, 'n' + direction)  # number grid cells in direction
            pos_series = getattr(pstalk, direction + 'p').T[
                argmin:argmax +
                1]  # get position timeseries series for direction for all particles
            N_dt = pos_series.shape[0]  # get number of time steps available
            N_par = pos_series.shape[1]  # get number of stalked particles

            travel_distance = 0. * pos_series  # prepare 'travel distance' array for all particles
            mean_travel_dist = np.array(0)
            # prepare mean, var and sigma arrays
            variance = np.array(0)
            sigma = np.array(0)

            ## calulate travel distances for each particle with corrections for jumps at the boundary
            for i_t, pos in enumerate(pos_series):
                if i_t == 0: continue  # skip first time_step
                printProgressBar(i_t, N_dt)

                # calculate the distance dx made in dt for all particles at once
                dx = pos - pos_series[i_t - 1]
                travel_distance[i_t] = travel_distance[i_t - 1] + dx

                # correct for negative jumps
                jumps = np.where(dx > jump_distance * L)
                travel_distance[i_t][jumps] = travel_distance[i_t][jumps] - L

                # correct for positive jumps
                jumps = np.where(dx < -jump_distance * L)
                travel_distance[i_t][jumps] = travel_distance[i_t][jumps] + L

            # calculate mean, variance and sigma for at 'time' i
            mean_travel_dist = np.mean(travel_distance, axis=1)

            # 1. estimate variance as time series
            variance = np.var(travel_distance, axis=1)
            sigma = np.sqrt(variance)

            # 2. estimate diffusion by using centered derivatives method  !!!
            diff_dvar = 0.5 * derivatives_centered(time_range, variance)
            diffusion_mean = np.mean(diff_dvar)
            diffusion_std = np.std(diff_dvar)

            # create diffusion object
            self.diffusion = diffusion_mean
            self.diffusion_error = diffusion_std
            self.travel_distance = travel_distance
            self.mean_travel_distance = mean_travel_dist
            self.timerange = time_range
            self.variance = variance
            self.sigma = sigma
            self.direction = direction

            print('~ diffusion = ' + str(self.diffusion))
            print('~ diffusion std = ' + str(self.diffusion_error))
            print('~ direction = ' + str(self.direction))

            try:
                print('## saving results in' + join(out_path, out_name))
                save(obj=self, name=out_name, folder=out_path)
            except:
                print("!! Unexpected error:", sys.exc_info()[0])
                print("!! Check if you have writing rights.")
                raise
Exemplo n.º 5
0
    def __init__(self, direction='x', trange=[0, -1], sim='.',
                 OVERWRITE=False, quiet=True, jump_distance=0.5, use_existing_pstalk_sav=False):

        from os.path import join
        from os.path import exists as path_exists
        import numpy as np
        from scipy.stats import linregress

        from pencilnew.io import load, save, exists
        from pencilnew.read import pstalk as read_pstalk
        from pencilnew.math.derivatives import simple_centered as derivatives_centered
        from pencilnew.backpack import printProgressBar

        # .. no pstalk file is found
        if not path_exists(join(sim.datadir, 'proc0', 'particles_stalker.dat')):
          print('?? WARNING: No particles_stalker.dat found for simulation '+sim.name+'!! Skipping this run!')
          return False

        # check if already existing. if, then load it
        out_path = join(sim.pc_datadir, 'particle', 'diffusion')
        out_name = direction+'_'+str(trange[0])+'_'+str(trange[1])

        # skip if diffusion already exists
        if not OVERWRITE and exists(name=out_name, folder=out_path):
            self_tmp = load(out_name, folder=out_path)
            for key in [a for a in dir(self_tmp) if not a.startswith('__')]:
                setattr(self, key, getattr(self_tmp, key))

        else:
            #### start calculations ####
            print('##')
            print('## Calculating particle diffusion for "'+sim.name+'" in "'+sim.path+'"')

            print('## reading particle stalker file..')
            pstalk = read_pstalk(sim=sim, use_existing_pstalk_sav=use_existing_pstalk_sav, tmin=trange[0], tmax=trange[1])
            grid = sim.grid
            dim = sim.dim

            # get time range as index for pstalk dataset
            argmin = np.abs(pstalk.t-trange[0]).argmin()
            if trange[1] < 0.:
              argmax = pstalk.t.argmax()
            else:
              argmax = np.abs(pstalk.t-trange[1]).argmin()
            time_range = pstalk.t[argmin:argmax+1]

            # modify time range with time_range[0] == 0 by substracting first time entry from time list
            #time_offset = pstalk.t[argmin:argmax][0]
            #time_range = pstalk.t[argmin:argmax]-time_offset

            print('\n## doing the calculation for '+direction)
            L = getattr(grid, 'L'+direction)                      # domain size in direction
            N = getattr(dim, 'n'+direction)                       # number grid cells in direction
            pos_series = getattr(pstalk,direction+'p').T[argmin:argmax+1]     # get position timeseries series for direction for all particles
            N_dt = pos_series.shape[0]                            # get number of time steps available
            N_par = pos_series.shape[1]                           # get number of stalked particles

            travel_distance = 0. * pos_series       # prepare 'travel distance' array for all particles
            mean_travel_dist = np.array(0);         # prepare mean, var and sigma arrays
            variance = np.array(0);
            sigma = np.array(0)

            ## calulate travel distances for each particle with corrections for jumps at the boundary
            pbar = False; Nt = np.size(pos_series)
            for i_t,pos in enumerate(pos_series):
                if i_t == 0: continue                                 # skip first time_step
                pbar = printProgressBar(i_t, Nt, pbar=pbar)

                # calculate the distance dx made in dt for all particles at once
                dx = pos - pos_series[i_t-1]
                travel_distance[i_t] = travel_distance[i_t-1] + dx

                # correct for negative jumps
                jumps = np.where(dx > jump_distance*L)
                travel_distance[i_t][jumps] = travel_distance[i_t][jumps] - L

                # correct for positive jumps
                jumps = np.where(dx < -jump_distance*L)
                travel_distance[i_t][jumps] = travel_distance[i_t][jumps] + L

            # calculate mean, variance and sigma for at 'time' i
            mean_travel_dist = np.mean(travel_distance, axis=1)

            # 1. estimate variance as time series
            variance = np.var(travel_distance, axis=1)
            sigma = np.sqrt(variance)

            # 2. estimate diffusion by using centered derivatives method  !!!
            diff_dvar = 0.5*derivatives_centered(time_range, variance)
            diffusion_mean = np.mean(diff_dvar)
            diffusion_std = np.std(diff_dvar)

            # create diffusion object
            self.diffusion = diffusion_mean
            self.diffusion_error = diffusion_std
            self.travel_distance = travel_distance
            self.mean_travel_distance = mean_travel_dist
            self.timerange = time_range
            self.variance = variance
            self.sigma = sigma
            self.direction = direction

            print('~ diffusion = '+str(self.diffusion))
            print('~ diffusion std = '+str(self.diffusion_error))
            print('~ direction = '+str(self.direction))

            try:
                print('## saving results in' + join(out_path,out_name))
                save(obj=self, name=out_name, folder=out_path)
            except:
                print("!! Unexpected error:", sys.exc_info()[0])
                print("!! Check if you have writing rights.")
                raise