Exemplo n.º 1
0
def _layer1(weight, s, r, q, p, set_cnot_wires):
    r"""Implement the first layer of the circuit to exponentiate the double-excitation
    operator entering the UCCSD ansatz.

    .. math::

        \hat{U}_{pqrs}^{(1)}(\theta) = \mathrm{exp} \Big\{ \frac{i\theta}{8}
        \bigotimes_{b=s+1}^{r-1} \hat{Z}_b \bigotimes_{a=q+1}^{p-1} \hat{Z}_a
        (\hat{X}_s \hat{X}_r \hat{Y}_q \hat{X}_p) \Big\}

    Args:
        weight (float): angle :math:`\theta` entering the Z rotation acting on wire ``p``
        s (int): qubit index ``s``
        r (int): qubit index ``r``
        q (int): qubit index ``q``
        p (int): qubit index ``p``
        set_cnot_wires (list[Wires]): list of CNOT wires
    """

    # U_1, U_2, U_3, U_4 acting on wires 's', 'r', 'q' and 'p'
    Hadamard(wires=s)
    Hadamard(wires=r)
    RX(-np.pi / 2, wires=q)
    Hadamard(wires=p)

    # Applying CNOTs
    for cnot_wires in set_cnot_wires:
        CNOT(wires=cnot_wires)

    # Z rotation acting on wire 'p'
    RZ(weight / 8, wires=p)

    # Applying CNOTs in reverse order
    for cnot_wires in reversed(set_cnot_wires):
        CNOT(wires=cnot_wires)

    # U_1^+, U_2^+, U_3^+, U_4^+ acting on wires 's', 'r', 'q' and 'p'
    Hadamard(wires=s)
    Hadamard(wires=r)
    RX(np.pi / 2, wires=q)
    Hadamard(wires=p)
Exemplo n.º 2
0
def ParticleConservingU2(weights, wires, init_state=None):
    r"""Implements the heuristic VQE ansatz for Quantum Chemistry simulations using the
    particle-conserving entangler :math:`U_\mathrm{ent}(\vec{\theta}, \vec{\phi})` proposed in
    `arXiv:1805.04340 <https://arxiv.org/abs/1805.04340>`_.

    This template prepares :math:`N`-qubit trial states by applying :math:`D` layers of the entangler
    block :math:`U_\mathrm{ent}(\vec{\theta}, \vec{\phi})` to the Hartree-Fock state

    .. math::

        \vert \Psi(\vec{\theta}, \vec{\phi}) \rangle = \hat{U}^{(D)}_\mathrm{ent}(\vec{\theta}_D,
        \vec{\phi}_D) \dots \hat{U}^{(2)}_\mathrm{ent}(\vec{\theta}_2, \vec{\phi}_2)
        \hat{U}^{(1)}_\mathrm{ent}(\vec{\theta}_1, \vec{\phi}_1) \vert \mathrm{HF}\rangle,

    where :math:`\hat{U}^{(i)}_\mathrm{ent}(\vec{\theta}_i, \vec{\phi}_i) =
    \hat{R}_\mathrm{z}(\vec{\theta}_i) \hat{U}_\mathrm{2,\mathrm{ex}}(\vec{\phi}_i)`.
    The circuit implementing the entangler blocks is shown in the figure below:

    |

    .. figure:: ../../_static/templates/layers/particle_conserving_u2.png
        :align: center
        :width: 60%
        :target: javascript:void(0);

    |

    Each layer contains :math:`N` rotation gates :math:`R_\mathrm{z}(\vec{\theta})` and
    :math:`N-1` particle-conserving exchange gates :math:`U_{2,\mathrm{ex}}(\phi)`
    that act on pairs of nearest-neighbors qubits. The repeated units across several qubits are
    shown in dotted boxes.  The unitary matrix representing :math:`U_{2,\mathrm{ex}}(\phi)`
    (`arXiv:1805.04340 <https://arxiv.org/abs/1805.04340>`_) is decomposed into its elementary
    gates and implemented in the :func:`~.u2_ex_gate` function using PennyLane quantum operations.

    |

    .. figure:: ../../_static/templates/layers/u2_decomposition.png
        :align: center
        :width: 60%
        :target: javascript:void(0);

    |


    Args:
        weights (tensor_like): Weight tensor of shape ``(D, M)`` where ``D`` is the number of
            layers and ``M`` = ``2N-1`` is the total number of rotation ``(N)`` and exchange
            ``(N-1)`` gates per layer.
        wires (Iterable or Wires): Wires that the template acts on. Accepts an iterable of numbers
            or strings, or a Wires object.
        init_state (tensor_like): shape ``(len(wires),)`` tensor representing the Hartree-Fock state
            used to initialize the wires.

    Raises:
        ValueError: if inputs do not have the correct format

    .. UsageDetails::


        #. The number of wires has to be equal to the number of spin orbitals included in
           the active space.

        #. The number of trainable parameters scales with the number of layers :math:`D` as
           :math:`D(2N-1)`.

        An example of how to use this template is shown below:

        .. code-block:: python

            import pennylane as qml
            from pennylane.templates import ParticleConservingU2

            from functools import partial

            # Build the electronic Hamiltonian from a local .xyz file
            h, qubits = qml.qchem.molecular_hamiltonian("h2", "h2.xyz")

            # Define the HF state
            ref_state = qml.qchem.hf_state(2, qubits)

            # Define the device
            dev = qml.device('default.qubit', wires=qubits)

            # Define the ansatz
            ansatz = partial(ParticleConservingU2, init_state=ref_state)

            # Define the cost function
            cost_fn = qml.ExpvalCost(ansatz, h, dev)

            # Compute the expectation value of 'h' for a given set of parameters
            layers = 1
            params = qml.init.particle_conserving_u2_normal(layers, qubits)
            print(cost_fn(params))
    """

    wires = Wires(wires)
    repeat, nm_wires, init_state = _preprocess(weights, wires, init_state)

    qml.BasisState(init_state, wires=wires)

    for l in range(repeat):

        for j, _ in enumerate(wires):
            RZ(weights[l, j], wires=wires[j])

        for i, wires_ in enumerate(nm_wires):
            u2_ex_gate(weights[l, len(wires) + i], wires=wires_)
def SingleExcitationUnitary(weight, wires=None):
    r"""Circuit to exponentiate the tensor product of Pauli matrices representing the
    single-excitation operator entering the Unitary Coupled-Cluster Singles
    and Doubles (UCCSD) ansatz. UCCSD is a VQE ansatz commonly used to run quantum
    chemistry simulations.

    The CC single-excitation operator is given by

    .. math::

        \hat{U}_{pr}(\theta) = \mathrm{exp} \{ \theta_{pr} (\hat{c}_p^\dagger \hat{c}_r
        -\mathrm{H.c.}) \},

    where :math:`\hat{c}` and :math:`\hat{c}^\dagger` are the fermionic annihilation and
    creation operators and the indices :math:`r` and :math:`p` run over the occupied and
    unoccupied molecular orbitals, respectively. Using the `Jordan-Wigner transformation
    <https://arxiv.org/abs/1208.5986>`_ the fermionic operator defined above can be written
    in terms of Pauli matrices (for more details see
    `arXiv:1805.04340 <https://arxiv.org/abs/1805.04340>`_).

    .. math::

        \hat{U}_{pr}(\theta) = \mathrm{exp} \Big\{ \frac{i\theta}{2}
        \bigotimes_{a=r+1}^{p-1}\hat{Z}_a (\hat{Y}_r \hat{X}_p) \Big\}
        \mathrm{exp} \Big\{ -\frac{i\theta}{2}
        \bigotimes_{a=r+1}^{p-1} \hat{Z}_a (\hat{X}_r \hat{Y}_p) \Big\}.

    The quantum circuit to exponentiate the tensor product of Pauli matrices entering
    the latter equation is shown below (see `arXiv:1805.04340 <https://arxiv.org/abs/1805.04340>`_):

    |

    .. figure:: ../../_static/templates/subroutines/single_excitation_unitary.png
        :align: center
        :width: 60%
        :target: javascript:void(0);

    |

    As explained in `Seely et al. (2012) <https://arxiv.org/abs/1208.5986>`_,
    the exponential of a tensor product of Pauli-Z operators can be decomposed in terms of
    :math:`2(n-1)` CNOT gates and a single-qubit Z-rotation referred to as :math:`U_\theta` in
    the figure above. If there are :math:`X` or :math:`Y` Pauli matrices in the product,
    the Hadamard (:math:`H`) or :math:`R_x` gate has to be applied to change to the
    :math:`X` or :math:`Y` basis, respectively. The latter operations are denoted as
    :math:`U_1` and :math:`U_2` in the figure above. See the Usage Details section for more
    information.

    Args:
        weight (float): angle :math:`\theta` entering the Z rotation acting on wire ``p``
        wires (Iterable or Wires): Wires that the template acts on.
            The wires represent the subset of orbitals in the interval ``[r, p]``. Must be of
            minimum length 2. The first wire is interpreted as ``r`` and the last wire as ``p``.
            Wires in between are acted on with CNOT gates to compute the parity of the set
            of qubits.

    Raises:
        ValueError: if inputs do not have the correct format

    .. UsageDetails::

        Notice that:

        #. :math:`\hat{U}_{pr}(\theta)` involves two exponentiations where :math:`\hat{U}_1`,
           :math:`\hat{U}_2`, and :math:`\hat{U}_\theta` are defined as follows,

           .. math::
               [U_1, U_2, U_{\theta}] = \Bigg\{\bigg[R_x(-\pi/2), H, R_z(\theta/2)\bigg],
               \bigg[H, R_x(-\frac{\pi}{2}), R_z(-\theta/2) \bigg] \Bigg\}

        #. For a given pair ``[r, p]``, ten single-qubit and ``4*(len(wires)-1)`` CNOT
           operations are applied. Notice also that CNOT gates act only on qubits
           ``wires[1]`` to ``wires[-2]``. The operations performed across these qubits
           are shown in dashed lines in the figure above.

        An example of how to use this template is shown below:

        .. code-block:: python

            import pennylane as qml
            from pennylane.templates import SingleExcitationUnitary

            dev = qml.device('default.qubit', wires=3)

            @qml.qnode(dev)
            def circuit(weight, wires=None):
                SingleExcitationUnitary(weight, wires=wires)
                return qml.expval(qml.PauliZ(0))

            weight = 0.56
            print(circuit(weight, wires=[0, 1, 2]))

    """

    ##############
    # Input checks

    wires = Wires(wires)

    if len(wires) < 2:
        raise ValueError("expected at least two wires; got {}".format(
            len(wires)))

    expected_shape = ()
    check_shape(
        weight,
        expected_shape,
        msg="'weight' must be of shape {}; got {}".format(
            expected_shape, get_shape(weight)),
    )

    ###############

    # Interpret first and last wire as r and p
    r = wires[0]
    p = wires[-1]

    # Sequence of the wires entering the CNOTs between wires 'r' and 'p'
    set_cnot_wires = [wires.subset([l, l + 1]) for l in range(len(wires) - 1)]

    # ------------------------------------------------------------------
    # Apply the first layer

    # U_1, U_2 acting on wires 'r' and 'p'
    RX(-np.pi / 2, wires=r)
    Hadamard(wires=p)

    # Applying CNOTs between wires 'r' and 'p'
    for cnot_wires in set_cnot_wires:
        CNOT(wires=cnot_wires)

    # Z rotation acting on wire 'p'
    RZ(weight / 2, wires=p)

    # Applying CNOTs in reverse order
    for cnot_wires in reversed(set_cnot_wires):
        CNOT(wires=cnot_wires)

    # U_1^+, U_2^+ acting on wires 'r' and 'p'
    RX(np.pi / 2, wires=r)
    Hadamard(wires=p)

    # ------------------------------------------------------------------
    # Apply the second layer

    # U_1, U_2 acting on wires 'r' and 'p'
    Hadamard(wires=r)
    RX(-np.pi / 2, wires=p)

    # Applying CNOTs between wires 'r' and 'p'
    for cnot_wires in set_cnot_wires:
        CNOT(wires=cnot_wires)

    # Z rotation acting on wire 'p'
    RZ(-weight / 2, wires=p)

    # Applying CNOTs in reverse order
    for cnot_wires in reversed(set_cnot_wires):
        CNOT(wires=cnot_wires)

    # U_1^+, U_2^+ acting on wires 'r' and 'p'
    Hadamard(wires=r)
    RX(np.pi / 2, wires=p)