Exemplo n.º 1
0
def complex_cos():
    def real_cos(x):
        vml.py_vdCos(x[0], x[5])

    def complex_cos(x):
        vml.py_vzCos(x[1], x[4])

    def complex_noimag_cos(x):
        vml.py_vzCos(x[2], x[4])

    def complex_noreal_cos(x):
        vml.py_vzCos(x[3], x[4])

    perfplot.show(
        setup=lambda n: [
            np.zeros(n, dtype=np.float64) + 0.25,
            np.zeros(n, dtype=np.complex128) + (0.25 + .25j),
            np.zeros(n, dtype=np.complex128) + 0.25,
            np.zeros(n, dtype=np.complex128) + 0.25j,
            np.zeros(n, dtype=np.complex128) + 0.25j,
            np.zeros(n, dtype=np.float64) + 0.25
        ],
        n_range=list(range(1000, 10000, 1000)),
        kernels=[
            real_cos, complex_cos, complex_noimag_cos, complex_noreal_cos
        ],
        logx=True,
        logy=True,
        title="real vs. complex cos",
        xlabel='len(vec)',
        equality_check=None,
    )
Exemplo n.º 2
0
def test_speed(N=2):
    numpy.random.seed(1)
    osa = colorio.OsaUcs()
    cielab = colorio.CIELAB()
    # cam16 = colorio.CAM16(0.69, 20, L_A=64 / numpy.pi / 5)
    ciecam02 = colorio.CIECAM02(0.69, 20, L_A=64 / numpy.pi / 5)

    # This close probably means that another figure hasn't been properly closed.
    import matplotlib.pyplot as plt

    plt.close()

    perfplot.show(
        # Don't use numpy.random.rand(3, n) to avoid the CIECAM breakdown
        setup=lambda n: numpy.outer(numpy.random.rand(3), numpy.ones(n)) * 10,
        equality_check=None,
        kernels=[
            osa.to_xyz100,
            cielab.to_xyz100,
            # cam16.to_xyz100,
            lambda Jsh: ciecam02.to_xyz100(Jsh, "Jsh"),
            numpy.cbrt,
        ],
        labels=["OSA-UCS", "CIELAB", "CIECAM02", "cbrt"],
        n_range=[2 ** n for n in range(N)],
        logx=True,
        logy=True,
        # relative_to=3
    )
Exemplo n.º 3
0
def main():
    argp = argparse.ArgumentParser()
    argp.add_argument('-t',
                      '--test',
                      action='store_true',
                      help='run unit test')
    argp.add_argument('-v',
                      '--verify',
                      action='store_true',
                      help='verify equality of methods')

    args = argp.parse_args()

    kernels = [
        vec, list_comp, apply, iterrows, itertuples, cython_iter, iloc_iter
    ]

    if args.test:
        print(doctest.testmod())
    elif args.verify:
        df = make_dataframe(100)
        v = kernels[0](df)
        for k in kernels[1:]:
            assert (v == k(df)).all(), f"{k.__name__} doesn't match"
    else:
        perfplot.show(setup=lambda n: make_dataframe(n),
                      kernels=kernels,
                      labels=[str(k.__name__) for k in kernels],
                      n_range=[2**k for k in range(16)],
                      xlabel='N',
                      logx=True,
                      logy=True,
                      equality_check=False)
Exemplo n.º 4
0
def performance_comparison_from():
    import perfplot

    def setup(n):
        out = numpy.empty((3, n))
        rgb = numpy.random.rand(3)
        for k in range(3):
            out[k] = rgb[k]
        return out

    Y_b = 20
    L_A = 64 / numpy.pi / 5
    c = 0.69  # average
    cam16 = colorio.CAM16(c, Y_b, L_A)

    cam16_legacy = CAM16Legacy(c, Y_b, L_A)

    perfplot.show(
        setup=setup,
        kernels=[cam16.from_xyz100, cam16_legacy.from_xyz100],
        labels=["new", "legacy"],
        n_range=1000 * numpy.arange(6),
        equality_check=False,
    )
    return
Exemplo n.º 5
0
def noerror_impact():
    def acos_with_errorhandling(x):
        vml.py_vmlSetMode(vml.PY_VML_ERRMODE_DEFAULT)
        vml.py_vdAcos(x[1], x[1])

    def acos_without_error_errorhandling(x):
        vml.py_vmlSetMode(vml.PY_VML_ERRMODE_ERRNO)
        vml.py_vdAcos(x[1], x[1])

    def acos_without_error(x):
        vml.py_vmlSetMode(vml.PY_VML_ERRMODE_DEFAULT)
        vml.py_vdAcos(x[0], x[0])

    perfplot.show(
        setup=lambda n: [
            np.zeros(int(n), dtype=np.float64) + 0.25,
            np.zeros(int(n), dtype=np.float64) + 2.0
        ],
        n_range=[1e4, 1e5, 1e6, 1e7, 1e8],
        kernels=[
            acos_without_error, acos_with_errorhandling,
            acos_without_error_errorhandling
        ],
        logx=True,
        logy=True,
        title="acos with errors",
        xlabel='len(vec)',
        equality_check=None,
    )
Exemplo n.º 6
0
def test0():
    perfplot.show(
        setup=np.random.rand,
        kernels=kernels,
        labels=["c_"],
        n_range=r,
        xlabel="len(a)",
    )
Exemplo n.º 7
0
def test_flops():
    perfplot.show(
        setup=np.random.rand,
        kernels=kernels,
        labels=["c_"],
        n_range=r,
        xlabel="len(a)",
        flops=lambda n: n,
    )
Exemplo n.º 8
0
def test_no_labels():
    def mytest(a):
        return numpy.c_[a, a]
    kernels = [mytest]
    r = [2**k for k in range(4)]
    perfplot.show(
            setup=numpy.random.rand,
            kernels=kernels, n_range=r, xlabel='len(a)'
            )
    return
Exemplo n.º 9
0
def test1():
    perfplot.show(
        setup=np.random.rand,
        kernels=kernels,
        labels=["c_"],
        n_range=r,
        xlabel="len(a)",
        logx=True,
        logy=False,
    )
Exemplo n.º 10
0
def test_return_tuples():
    def setup(n):
        return np.ones(n), np.full(n + 2, 3.1)

    def times(a, b):
        return 2 * a, 3 * b

    def times_reversed(a, b):
        return a * 2, b * 3

    perfplot.show(setup=setup,
                  kernels=[times, times_reversed],
                  n_range=[2**k for k in range(3)])
Exemplo n.º 11
0
def test():
    kernels = [lambda a: numpy.c_[a, a]]
    r = [2**k for k in range(4)]
    perfplot.show(setup=numpy.random.rand,
                  kernels=kernels,
                  labels=['c_'],
                  n_range=r,
                  xlabel='len(a)')
    perfplot.show(setup=numpy.random.rand,
                  kernels=kernels,
                  labels=['c_'],
                  n_range=r,
                  xlabel='len(a)',
                  logx=True,
                  logy=False)
    perfplot.show(setup=numpy.random.rand,
                  kernels=kernels,
                  labels=['c_'],
                  n_range=r,
                  xlabel='len(a)',
                  logx=False,
                  logy=True)
    perfplot.show(setup=numpy.random.rand,
                  kernels=kernels,
                  labels=['c_'],
                  n_range=r,
                  xlabel='len(a)',
                  logx=True,
                  logy=True)
    return
Exemplo n.º 12
0
def test3():
    def setup(n):
        assert isinstance(n, int)
        return np.random.rand(n)

    perfplot.show(
        setup=setup,
        kernels=kernels,
        labels=["c_"],
        n_range=r,
        xlabel="len(a)",
        logx=True,
        logy=True,
    )
Exemplo n.º 13
0
def plot(title, kernels, labels, n_vals):
    """Plot timings as a function of the parameter n.

    Args:
        title (str): plot title
        kernels (Sequence[Callable[[Any], Any]]): parametrized benchmarks to time
        labels (Sequence[str]): names of the kernels
        n_vals (Sequence[Any]): values the benchmark parameter n takes
    """
    import perfplot

    perfplot.show(
        setup=lambda n: n,
        kernels=kernels,
        labels=labels,
        n_range=n_vals,
        xlabel="n",
        title=title,
    )
Exemplo n.º 14
0
def service_function_costs():
    perfplot.show(
        setup=lambda n: n,
        n_range=[1e3, 1e4, 1e5],
        kernels=[
            vml.onoff_multithreading,
            vml.onoff_multithreading_local,
            vml.onoff_mode,
            vml.onoff_mkl_dynamic,
        ],
        labels=[
            "(2*set+1*get) thread number", "2*set local thread number",
            "2*set_mode", "(2*set+1*get) mkl_dynamic"
        ],
        logx=True,
        logy=True,
        title="service functions",
        xlabel='number of times',
        equality_check=None,
    )
Exemplo n.º 15
0
def perfplot():
    """Convenience entry point to perf-plot different function samples"""
    import perfplot

    functions = []
    labels = []
    for name, func in globals().items():
        if name.startswith("_bench"):
            name = name[1:]
            functions.append(func)
            labels.append(name)

    perfplot.show(
        setup=lambda n: n,  # or simply setup=numpy.random.rand
        kernels=functions,
        labels=labels,
        n_range=[2 ** k for k in range(15)],
        xlabel="len(a)",
        equality_check=None,
        target_time_per_measurement=5.0,
        time_unit="us",  # set to one of ("auto", "s", "ms", "us", or "ns") to force plot units
    )
Exemplo n.º 16
0
def sincos():
    def sincos(x):
        vml.py_vdSinCos(x[0], x[1], x[2])

    def sin_and_cos(x):
        vml.py_vdCos(x[0], x[1])
        vml.py_vdSin(x[0], x[2])

    perfplot.show(
        setup=lambda n: [
            np.zeros(n, dtype=np.float64) + 0.25,
            np.zeros(n, dtype=np.float64) + 0.25,
            np.zeros(n, dtype=np.float64) + 0.25
        ],
        n_range=list(range(1000, 10000, 1000)),
        kernels=[sincos, sin_and_cos],
        logx=False,
        logy=False,
        title="sincos vs sin+cos",
        xlabel='len(vec)',
        equality_check=None,
    )
Exemplo n.º 17
0
def expimag_sincos():
    def expimag(x):
        vml.py_vzExp(x[0], x[1])

    def sincos(x):
        vml.py_vdSinCos(x[2], x[3], x[4])

    perfplot.show(
        setup=lambda n: [
            np.zeros(n, dtype=np.complex128) + 0.25j,
            np.zeros(n, dtype=np.complex128) + 0.25,
            np.zeros(n, dtype=np.float64) + 0.25,
            np.zeros(n, dtype=np.float64) + 0.25,
            np.zeros(n, dtype=np.float64) + 0.25
        ],
        n_range=list(range(1000, 10000, 1000)),
        kernels=[expimag, sincos],
        logx=False,
        logy=False,
        title="sincos vs expimag",
        xlabel='len(vec)',
        equality_check=None,
    )
Exemplo n.º 18
0
def test_speed(n=3):
    path_pts = [[0, 0], [0, 1], [1, 1], [1, 0]]
    path0 = path.Path(path_pts)
    path1 = pypathlib.ClosedPath(path_pts)

    def _mpl_path(pts):
        return path0.contains_points(pts)

    def _pypathlib_contains_points(pts):
        return path1.contains_points(pts)

    numpy.random.seed(0)

    perfplot.show(
        setup=lambda n: numpy.random.rand(n, 2),
        kernels=[_mpl_path, _pypathlib_contains_points],
        n_range=[2 ** k for k in range(n)],
        labels=["matplotlib.path.contains_points", "pypathlib.contains_points"],
        logx=True,
        logy=True,
        xlabel="num points",
    )
    return
Exemplo n.º 19
0
def test():
    kernels = [lambda a: numpy.c_[a, a]]
    r = [2**k for k in range(4)]
    perfplot.show(
        setup=numpy.random.rand,
        kernels=kernels,
        labels=["c_"],
        n_range=r,
        xlabel="len(a)",
    )

    perfplot.show(
        setup=numpy.random.rand,
        kernels=kernels,
        labels=["c_"],
        n_range=r,
        xlabel="len(a)",
        logx=True,
        logy=False,
    )

    out = perfplot.bench(
        setup=numpy.random.rand,
        kernels=kernels,
        labels=["c_"],
        n_range=r,
        xlabel="len(a)",
        logx=False,
        logy=True,
    )
    print(out)

    perfplot.show(
        setup=numpy.random.rand,
        kernels=kernels,
        labels=["c_"],
        n_range=r,
        xlabel="len(a)",
        logx=True,
        logy=True,
    )
    return
Exemplo n.º 20
0
def test():
    perfplot.show(
        setup=numpy.random.rand,
        kernels=kernels,
        labels=["c_"],
        n_range=r,
        xlabel="len(a)",
    )

    perfplot.show(
        setup=numpy.random.rand,
        kernels=kernels,
        labels=["c_"],
        n_range=r,
        xlabel="len(a)",
        logx=True,
        logy=False,
    )

    out = perfplot.bench(
        setup=numpy.random.rand,
        kernels=kernels,
        labels=["c_"],
        n_range=r,
        xlabel="len(a)",
        logx=False,
        logy=True,
    )
    print(out)

    perfplot.show(
        setup=numpy.random.rand,
        kernels=kernels,
        labels=["c_"],
        n_range=r,
        xlabel="len(a)",
        logx=True,
        logy=True,
    )
    return
Exemplo n.º 21
0
def solve_3(in_val):
    mat, V = in_val
    return solve(mat, V, is_flat=False, solver=3)


def solve_4(in_val):
    mat, V = in_val
    return solve(mat, V, is_flat=False, solver=4)


def solve_5(in_val):
    mat, V = in_val
    return np.linalg.solve(mat, V)


perfplot.show(
    setup=get_les,
    kernels=[solve_1, solve_2, solve_3, solve_4, solve_5],
    labels=[
        "PTRANS-I",
        "PTRANS-II",
        "scipy.linalg.solve_banded",
        "scipy.sparse.linalg.spsolve",
        "numpy.linalg.solve",
    ],
    n_range=[2 ** k for k in range(2, 13)],
    xlabel="Size [n]",
    logy=True,
)
Exemplo n.º 22
0
import numpy

import perfplot

perfplot.show(
    setup=numpy.random.rand,
    kernels=[
        lambda a: numpy.c_[a, a],
        lambda a: numpy.stack([a, a]).T,
        lambda a: numpy.vstack([a, a]).T,
        lambda a: numpy.column_stack([a, a]),
        lambda a: numpy.concatenate([a[:, None], a[:, None]], axis=1),
    ],
    labels=["c_", "stack", "vstack", "column_stack", "concat"],
    n_range=[2**k for k in range(15)],
    xlabel="len(a)",
)
Exemplo n.º 23
0
"""Benchmark czt.iczt function."""

import numpy as np
import czt
import perfplot


def model(t):
    output = (1.0 * np.sin(2 * np.pi * 1e3 * t) +
              0.3 * np.sin(2 * np.pi * 2e3 * t) +
              0.1 * np.sin(2 * np.pi * 3e3 * t)) * np.exp(-1e3 * t)
    return output


perfplot.show(
    setup=lambda n: czt.czt(model(np.linspace(0, 20e-3, n))),
    kernels=[
        lambda a: czt.iczt(a, simple=True),
        lambda a: czt.iczt(a, simple=False),
    ],
    labels=["simple=True", "simple=False"],
    n_range=[10**k for k in range(1, 8)],
    xlabel="Input length",
    # equality_check=np.allclose,
    equality_check=False,
    target_time_per_measurement=0.1,
)
Exemplo n.º 24
0
    x, s, t = ds
    c, cn = get_pair(x)
    assert c in s
    assert cn not in s
    return True


def setup_ds(n):
    x = numpy.random.rand(n)
    s = set()
    t = pyavl.AVL()
    for xi in x:
        t.add(xi)
        s.add(xi)
    return (x, s, t)


perfplot.show(
    setup=setup_ds,
    kernels=[
        avl_query,
        set_query,
    ],
    n_range=[2**k for k in range(20)],
    labels=[
        "AVL tree",
        "set",
    ],
    title='Querying array performance',
    xlabel='len(x)',
)
Exemplo n.º 25
0
import numpy as np
import perfplot

import colorio

np.random.seed(1)
osa = colorio.cs.OsaUcs()
cielab = colorio.cs.CIELAB()
# cam16 = colorio.CAM16(0.69, 20, L_A=64 / np.pi / 5)
ciecam02 = colorio.cs.CIECAM02(0.69, 20, L_A=64 / np.pi / 5)

perfplot.show(
    # Don't use np.random.rand(3, n) to avoid the CIECAM breakdown
    setup=lambda n: np.outer(np.random.rand(3) * 10, np.ones(n)),
    equality_check=None,
    kernels=[
        osa.to_xyz100,
        cielab.to_xyz100,
        # cam16.to_xyz100,
        lambda Jsh: ciecam02.to_xyz100(Jsh, "Jsh"),
        # np.cbrt,
    ],
    labels=["OSA-UCS", "CIELAB", "CIECAM02", "cbrt"],
    n_range=[2**n for n in range(23)],
    # relative_to=3
)
# import tikzplotlib as tpl
# tpl.save("out.tex")
Exemplo n.º 26
0
    num_interior_edges = np.sum(mesh0.is_interior_edge)
    idx = random.sample(range(num_interior_edges), n // 10)
    print(num_interior_edges, len(idx), len(idx) / num_interior_edges)

    # # move interior points a little bit such that we have edges to flip
    # max_step = np.min(mesh.cell_inradius) / 2
    # mesh.points = mesh.points + max_step * np.random.rand(*mesh.points.shape)
    # print(mesh.num_delaunay_violations)
    return mesh0, mesh1, idx


def flip_old(data):
    mesh0, mesh1, idx = data
    mesh0.flip_interior_edges_old(idx)


def flip_new(data):
    mesh0, mesh1, idx = data
    mesh1.flip_interior_edges(idx)


perfplot.show(
    setup=setup,
    kernels=[flip_old, flip_new],
    n_range=[2**k for k in range(5, 13)],
    equality_check=None,
    # set target time to 0 to avoid more than one repetition
    target_time_per_measurement=0.0,
)
Exemplo n.º 27
0
def parallelization_impact_complex():
    def acos(x):
        vml.py_vzAcos(x[0], x[1])

    def cos(x):
        vml.py_vzCos(x[0], x[1])

    def sin(x):
        vml.py_vzSin(x[0], x[1])

    def asin(x):
        vml.py_vzAsin(x[0], x[1])

    def exp(x):
        vml.py_vzExp(x[0], x[1])

    def ln(x):
        vml.py_vzLn(x[0], x[1])

    def mul(x):
        vml.py_vzMul(x[0], x[0], x[1])

    def tan(x):
        vml.py_vzTan(x[0], x[1])

    def atan(x):
        vml.py_vzAtan(x[0], x[1])

    perfplot.show(
        setup=lambda n: [
            np.zeros(n, dtype=np.complex128) + 0.25 + 0.25j,
            np.zeros(n, dtype=np.complex128) + 0.25 + 0.25j
        ],
        n_range=list(range(10, 200, 10)),
        kernels=[tan, atan],
        logx=False,
        logy=False,
        title="tan, atan",
        xlabel='len(vec)',
        equality_check=None,
    )
    perfplot.show(
        setup=lambda n: [
            np.zeros(n, dtype=np.complex128) + 0.25 + 0.25j,
            np.zeros(n, dtype=np.complex128) + 0.25 + 0.25j
        ],
        n_range=list(range(100, 3000, 300)),
        kernels=[exp, ln, mul],
        logx=False,
        logy=False,
        title="exp, ln, mul",
        xlabel='len(vec)',
        equality_check=None,
    )
    perfplot.show(
        setup=lambda n: [
            np.zeros(n, dtype=np.complex128) + 0.25 + 0.25j,
            np.zeros(n, dtype=np.complex128) + 0.25 + 0.25j
        ],
        n_range=list(range(10, 200, 10)),
        kernels=[sin, cos, asin, acos],
        logx=False,
        logy=False,
        title="sin, cos, asin, acos",
        xlabel='len(vec)',
        equality_check=None,
    )
Exemplo n.º 28
0
    f = h5py.File(tmp+"with_keys_fixed_copy.hdf",'r')
    for i in indices_to_read:
        path = f"event/t{i}"
        table = f[path+'/block0_values'][:]
        columns = f[path+'/axis0'][:]
        indices = f[path +'/axis1'][:]
        df = pd.DataFrame(table,indices,columns)
    f.close()

# %%
def random_samples(lenght):
    return np.random.randint(0,sample_size,lenght)

perfplot.show(setup=random_samples,
              kernels=[read_with_keys_fixed,read_with_single, read_manual_retrival_with_keys],#[read_with_keys_table,read_with_keys_fixed,read_with_single,read_files],
              n_range=[  10000,  20000, 80000],
              equality_check=None,
            )
# %%
read_with_single([0])

# %%
f = pd.HDFStore(tmp+"single.hdf",complib='blosc:zstd')
f.keys()

# %%
f.select('table',"index=='10'")

# %%
sto = f.get_storer('table')
# %%
Exemplo n.º 29
0
def set_insert(ds):
    x, s, t = ds
    r = random.random()
    s.add(r)
    return True


def setup_ds(n):
    x = numpy.random.rand(n)
    s = set()
    t = pyavl.AVL()
    for xi in x:
        t.add(xi)
        s.add(xi)
    return (x, s, t)


perfplot.show(
    setup=setup_ds,
    kernels=[
        avl_insert,
        set_insert,
    ],
    n_range=[2**k for k in range(20)],
    labels=[
        "AVL tree",
        "set",
    ],
    title='Inserting in array performance',
    xlabel='len(x)',
)
Exemplo n.º 30
0
def parallelization_impact():
    def acos(x):
        vml.py_vdAcos(x[0], x[1])

    def cos(x):
        vml.py_vdCos(x[0], x[1])

    def sin(x):
        vml.py_vdSin(x[0], x[1])

    def asin(x):
        vml.py_vdAsin(x[0], x[1])

    def exp(x):
        vml.py_vdExp(x[0], x[1])

    def ln(x):
        vml.py_vdLn(x[0], x[1])

    def mul(x):
        vml.py_vdMul(x[0], x[1], x)

    def tan(x):
        vml.py_vdTan(x[0], x[1])

    def atan(x):
        vml.py_vdAtan(x[0], x[1])

    perfplot.show(
        setup=lambda n: np.zeros(n, dtype=np.float64) + 0.25,
        n_range=list(range(1000, 10000, 1000)),
        kernels=[tan, atan],
        logx=False,
        logy=False,
        title="tan vs atan",
        xlabel='len(vec)',
        equality_check=None,
    )

    perfplot.show(
        setup=lambda n: np.zeros(n, dtype=np.float64) + 0.25,
        n_range=list(range(1000, 10000, 1000)),
        kernels=[exp, ln, mul],
        logx=False,
        logy=False,
        title="exp, ln, mul",
        xlabel='len(vec)',
        equality_check=None,
    )

    perfplot.show(
        setup=lambda n: np.zeros(n, dtype=np.float64) + 0.25,
        n_range=list(range(1000, 10000, 1000)),
        kernels=[
            sin,
            cos,
        ],
        logx=False,
        logy=False,
        title="sin, cos",
        xlabel='len(vec)',
        equality_check=None,
    )

    perfplot.show(
        setup=lambda n: np.zeros(n, dtype=np.float64) + 0.25,
        n_range=list(range(1000, 10000, 1000)),
        kernels=[
            asin,
            acos,
        ],
        logx=False,
        logy=False,
        title="asin, acos",
        xlabel='len(vec)',
        equality_check=None,
    )