Exemplo n.º 1
0
def preprocessNodes(mesh_file, out_dir, rank):
    ''' Preprocess nodal coordinates of a given mesh in Gmsh format.

    :param str mesh_file: mesh file name to be preprocess.
    :param str out_dir: path for output.
    :param int rank: MPI rank.
    :return: number of nodes
    :rtype: int
    '''

    if rank == 0:
        PETSc.Sys.Print('  Nodal coordinates (nodes.dat)')

    # Check if mesh_file exist
    success = checkFilePath(mesh_file)

    if rank == 0:
        if not success:
            msg = ('  preprocessNodes(): file ' + mesh_file +
                   ' does not exist.')
            raise ValueError(msg)

    # Read nodes
    nodes, nNodes = readGmshNodes(mesh_file)

    # Read connectivity
    elemsN, nElems = readGmshConnectivity(mesh_file)

    # Build coordinates in PETGEM format where each row
    # represent the xyz coordinates of the 4 tetrahedral element
    numDimensions = 3
    nodalOrder = 4
    data = np.array((nodes[elemsN[:], :]), dtype=np.float)
    data = data.reshape(nElems, numDimensions*nodalOrder)

    # Delete unnecesary arrays
    del nodes
    del elemsN

    # Get matrix dimensions
    size = data.shape

    # Build PETSc structures
    matrix = createSequentialDenseMatrixWithArray(size[0], size[1], data)

    # Verify if OUT_DIR exists
    checkIfDirectoryExist(out_dir)

    # Build path to save the file
    out_path = out_dir + 'nodes.dat'

    # Write PETGEM nodes in PETSc format
    writeParallelDenseMatrix(out_path, matrix, communicator=PETSc.COMM_SELF)

    return nNodes
Exemplo n.º 2
0
def preprocessingNodalConnectivity(mesh_file, out_dir, rank):
    ''' Preprocess nodal connectivity of a given mesh in Gmsh format.

    :param str mesh_file: mesh file name to be preprocess.
    :param str out_dir: path for output.
    :param int rank: MPI rank.
    :return: number of tetrahedral elements
    :rtype: int
    '''

    if rank == 0:
        PETSc.Sys.Print('  Nodal connectivity (elemsN.dat)')

    # Check if mesh_file exist
    success = checkFilePath(mesh_file)

    if rank == 0:
        if not success:
            msg = ('  preprocessingNodalConnectivity(): file ' + mesh_file +
                   ' does not exist.')
            raise ValueError(msg)

    # Read connectivity
    elemsN, nElems = readGmshConnectivity(mesh_file)

    # Get matrix dimensions
    size = elemsN.shape

    # Build PETSc structures
    matrix = createSequentialDenseMatrixWithArray(size[0], size[1], elemsN)

    # Verify if OUT_DIR exists
    checkIfDirectoryExist(out_dir)

    # Build path to save the file
    out_path = out_dir + 'meshConnectivity.dat'

    # Write PETGEM nodes in PETSc format
    writeParallelDenseMatrix(out_path, matrix, communicator=PETSc.COMM_SELF)

    return nElems
Exemplo n.º 3
0
def preprocessingDataReceivers(mesh_file, receivers_file,
                               out_dir, rank):
    ''' Preprocess conductivity model associated to a given mesh in Gmsh
    format. Here, dofs are defined for edge finite element computations.

    :param str mesh_file: mesh file name to be preprocess.
    :param str receivers_file: receiver positions file name to be preprocess.
    :param str out_dir: path for output.
    :param int rank: MPI rank.
    :return: None
    '''
    from scipy.spatial import Delaunay

    if rank == 0:
        PETSc.Sys.Print('  Receiver positions (receivers.dat)')

    # Check if mesh_file exist
    success = checkFilePath(mesh_file)

    if rank == 0:
        if not success:
            msg = ('  preprocessingDataReceivers(): file ' + mesh_file +
                   ' does not exist.')
            raise ValueError(msg)

    # Check if receivers_file exist
    success = checkFilePath(receivers_file)

    if rank == 0:
        if not success:
            msg = ('  preprocessingDataReceivers(): file ' + receivers_file +
                   ' does not exist.')
            raise ValueError(msg)

    # Read receivers_file
    receivers = np.loadtxt(receivers_file)

    # Number of receivers
    if receivers.ndim == 1:
        nReceivers = 1
    else:
        dim = receivers.shape
        nReceivers = dim[0]

    # Read nodes
    nodes, nNodes = readGmshNodes(mesh_file)

    # Build Delaunay triangulation with nodes
    tri = Delaunay(nodes)

    # Delete unnecesary arrays
    del nodes

    # Read connectivity
    elemsN, nElems = readGmshConnectivity(mesh_file)

    # Compute dofs
    dofs, _ = computeDofs(elemsN, nElems)

    # Overwrite Delaunay structure with mesh_file connectivity
    tri.simplices = elemsN.astype(np.int32)

    # Delete unnecesary arrays
    del elemsN

    # Find out which tetrahedral element points are in
    recvElems = tri.find_simplex(receivers)

    # Determine if all receiver points were found
    idx = np.where(recvElems < 0)[0]

    # If idx is not empty, there are receivers outside the domain
    if idx.size != 0:
        PETSc.Sys.Print('     Some receivers are were not located')
        PETSc.Sys.Print('     Following ID-receivers will not be taken ' +
                        'into account: ')
        PETSc.Sys.Print(idx)

        # Update number of receivers
        nReceivers = nReceivers - len(idx)

        if nReceivers == 0:
            PETSc.Sys.Print('     No receiver has been found. Nothing to do.'
                            ' Aborting')
            exit(-1)

        # Remove idx from receivers matrix
        receivers = np.delete(receivers, idx, axis=0)

        # Create new file with located points coordinates
        # Build path to save the file
        out_path = out_dir + 'receiversPETGEM.txt'
        PETSc.Sys.Print('     Saving file with localized receiver positions ' +
                        '(receiversPETGEM.txt)')
        np.savetxt(out_path, receivers, fmt='%1.8e')

    # Allocate space for receives in PETGEM format
    numDimensions = 3
    nodalOrder = 4
    edgeOrder = 6
    allocate = numDimensions+nodalOrder*numDimensions+nodalOrder+edgeOrder
    tmp = np.zeros((nReceivers, allocate), dtype=np.float)

    # Fill tmp matrix with receiver positions, element coordinates and
    # nodal indexes
    for iReceiver in np.arange(nReceivers):
        # If there is one receiver
        if nReceivers == 1:
            # Get receiver coordinates
            coordiReceiver = receivers[0:]
            # Get element coordinates (container element)
            coordElement = tri.points[tri.simplices[recvElems, :]]
            coordElement = coordElement.flatten()
            # Get nodal indexes (container element)
            nodesElement = tri.simplices[recvElems, :]
            # Get element-dofs indices (container element)
            dofsElement = dofs[recvElems, :]
        # If there are more than one receivers
        else:
            # Get receiver coordinates
            coordiReceiver = receivers[iReceiver, :]
            # Get element coordinates (container element)
            coordElement = tri.points[tri.simplices[recvElems[iReceiver], :]]
            coordElement = coordElement.flatten()
            # Get nodal indexes (container element)
            nodesElement = tri.simplices[recvElems[iReceiver], :]
            # Get element-dofs indices (container element)
            dofsElement = dofs[recvElems[iReceiver], :]
        # Insert data for iReceiver
        tmp[iReceiver, 0:3] = coordiReceiver
        tmp[iReceiver, 3:15] = coordElement
        tmp[iReceiver, 15:19] = nodesElement
        tmp[iReceiver, 19:] = dofsElement

    # Delete unnecesary arrays
    del tri
    del dofs

    # Get matrix dimensions
    size = tmp.shape

    # Build PETSc structures
    matrix = createSequentialDenseMatrixWithArray(size[0], size[1], tmp)

    # Delete unnecesary arrays
    del tmp

    # Verify if OUT_DIR exists
    checkIfDirectoryExist(out_dir)

    # Build path to save the file
    out_path = out_dir + 'receivers.dat'

    # Write PETGEM receivers in PETSc format
    writeParallelDenseMatrix(out_path, matrix, communicator=PETSc.COMM_SELF)

    return nReceivers
Exemplo n.º 4
0
def preprocessingDOF(mesh_file, out_dir, rank):
    ''' Preprocess degrees of freedom (DOF) and its associated data structures
    of a given mesh in Gmsh format. Here, dofs are defined for edge
    finite element computations.

    :param str mesh_file: mesh file name to be preprocess.
    :param str out_dir: path for output.
    :param int rank: MPI rank.
    :return: number of DOFS.
    :rtype: int
    '''

    if rank == 0:
        PETSc.Sys.Print('  Degrees of freedom (dofs.dat)')

    # Check if mesh_file exist
    success = checkFilePath(mesh_file)

    if rank == 0:
        if not success:
            msg = ('  preprocessingDOF(): file ' + mesh_file +
                   ' does not exist.')
            raise ValueError(msg)

    # Read connectivity
    elemsN, nElems = readGmshConnectivity(mesh_file)

    # Compute dofs
    dofs, dofsNodes = computeDofs(elemsN, nElems)
    nDofs = dofsNodes.shape[0]

    # Compute faces
    elemsF, facesN = computeFaces(elemsN, nElems)

    # Compute boundary faces
    boundaryFacesN = computeBoundaryFaces(elemsF, facesN)

    # Delete unnecesary arrays
    del elemsN
    del elemsF
    del facesN

    # Compute boundary dofs
    boundaryDofs = computeBoundaryDofs(dofsNodes, boundaryFacesN)

    # Delete unnecesary arrays
    del boundaryFacesN

    # ---------- DOFS ----------
    # Get matrix dimensions
    size = dofs.shape

    # Build PETSc structures
    matrix = createSequentialDenseMatrixWithArray(size[0], size[1], dofs)

    # Delete unnecesary arrays
    del dofs

    # Verify if OUT_DIR exists
    checkIfDirectoryExist(out_dir)

    # Build path to save the file
    out_path = out_dir + 'dofs.dat'

    # Write PETGEM nodes in PETSc format
    writeParallelDenseMatrix(out_path, matrix, communicator=PETSc.COMM_SELF)

    # ---------- DOFS TO NODES ----------
    if rank == 0:
        PETSc.Sys.Print('  Dofs connectivity (dofsNodes.dat)')

    # Get matrix dimensions
    size = dofsNodes.shape

    # Build PETSc structures
    matrix = createSequentialDenseMatrixWithArray(size[0], size[1], dofsNodes)

    # Delete unnecesary arrays
    del dofsNodes

    # Verify if OUT_DIR exists
    checkIfDirectoryExist(out_dir)

    # Build path to save the file
    out_path = out_dir + 'dofsNodes.dat'

    # Write PETGEM nodes in PETSc format
    writeParallelDenseMatrix(out_path, matrix, communicator=PETSc.COMM_SELF)

    # ---------- BOUNDARY DOFs ----------
    if rank == 0:
        PETSc.Sys.Print('  Boundaries (boundaries.dat)')

    # Build PETSc structures
    vector = createSequentialVectorWithArray(boundaryDofs)

    # Delete unnecesary arrays
    del boundaryDofs

    # Verify if OUT_DIR exists
    checkIfDirectoryExist(out_dir)

    # Build path to save the file
    out_path = out_dir + 'boundaries.dat'

    # Write PETGEM nodes in PETSc format
    writePetscVector(out_path, vector, communicator=PETSc.COMM_SELF)

    return nDofs
Exemplo n.º 5
0
def preprocessingFaces(nedelec_order, mesh_file, out_dir, rank):
    ''' Preprocess faces, face boundaries and its associated data structures
    of a given mesh in Gmsh format.

    :param int nedelec_order: nedelec element order.
    :param str mesh_file: mesh file name to be preprocess.
    :param str out_dir: path for output.
    :param int rank: MPI rank.
    :return: number of edges.
    :rtype: int
    '''

    # Check if mesh_file exist
    success = checkFilePath(mesh_file)

    if rank == 0:
        if not success:
            msg = ('  preprocessingFaces(): file ' + mesh_file +
                   ' does not exist.')
            raise ValueError(msg)

    # Read connectivity
    elemsN, nElems = readGmshConnectivity(mesh_file)

    # Compute faces
    elemsF, facesN = computeFaces(elemsN, nElems, nedelec_order)

    # Number of faces
    size = facesN.shape
    nFaces = size[0]

    # Delete unnecesary arrays
    del elemsN

    # ---------- Export Faces connectivity ----------
    if rank == 0:
        PETSc.Sys.Print('  Faces connectivity (faces.dat)')

    # Get matrix dimensions
    size = elemsF.shape
    # Build PETSc structures
    matrix = createSequentialDenseMatrixWithArray(size[0], size[1], elemsF)

    # Verify if OUT_DIR exists
    checkIfDirectoryExist(out_dir)

    # Build path to save the file
    out_path = out_dir + 'faces.dat'

    # Write PETGEM edges in PETSc format
    writeParallelDenseMatrix(out_path, matrix, communicator=PETSc.COMM_SELF)

    # ---------- Export Faces connectivity ----------
    if rank == 0:
        PETSc.Sys.Print('  Faces-nodes connectivity (facesN.dat)')

    # Build facesN connectivity for each element
    nNodes_face = 3
    nFaces_element = 4
    # Allocate matrix with an additional position to store the total number of
    # faces in the mesh
    facesN_tmp = np.zeros((nElems, nNodes_face * nFaces_element + 1))

    for iEle in np.arange(nElems):
        facesElement = elemsF[iEle, :]
        nodesFace = facesN[facesElement, :]
        facesN_tmp[iEle, 0] = nFaces
        facesN_tmp[iEle, 1:] = nodesFace.reshape(1,
                                                 nNodes_face * nFaces_element)

    # Get matrix dimensions
    size = facesN_tmp.shape
    # Build PETSc structures
    matrix = createSequentialDenseMatrixWithArray(size[0], size[1], facesN_tmp)

    # Delete unnecesary arrays
    del elemsF
    del facesN
    del facesN_tmp

    # Verify if OUT_DIR exists
    checkIfDirectoryExist(out_dir)

    # Build path to save the file
    out_path = out_dir + 'facesNodes.dat'

    # Write PETGEM edges in PETSc format
    writeParallelDenseMatrix(out_path, matrix, communicator=PETSc.COMM_SELF)

    return nFaces
Exemplo n.º 6
0
def preprocessingEdges(nedelec_order, mesh_file, out_dir, rank):
    ''' Preprocess edges, edge boundaries and its associated data structures
    of a given mesh in Gmsh format. For edge finite element of linear
    order the edges are the dofs. For edge finite element of second order
    the dofs are computed in runtime based on edges and faces on each
    tetrahedral element.

    :param int nedelec_order: nedelec element order.
    :param str mesh_file: mesh file name to be preprocess.
    :param str out_dir: path for output.
    :param int rank: MPI rank.
    :return: number of edges.
    :rtype: int
    '''

    # ---------- Export Edges ----------
    if rank == 0:
        PETSc.Sys.Print('  Edges (edges.dat)')

    # Check if mesh_file exist
    success = checkFilePath(mesh_file)

    if rank == 0:
        if not success:
            msg = ('  preprocessingEdges(): file ' + mesh_file +
                   ' does not exist.')
            raise ValueError(msg)

    # Read connectivity
    elemsN, nElems = readGmshConnectivity(mesh_file)

    # Compute edges
    elemsE, edgesNodes = computeEdges(elemsN, nElems, nedelec_order)
    nEdges = edgesNodes.shape[0]

    # Compute boundaries
    boundaries, nDofs = computeBoundaries(elemsN, nElems, edgesNodes,
                                          nedelec_order)

    # ---------- Export Edges ----------
    # Get matrix dimensions
    size = elemsE.shape
    # Build PETSc structures
    matrix = createSequentialDenseMatrixWithArray(size[0], size[1], elemsE)

    # Delete unnecesary arrays
    del elemsE

    # Verify if OUT_DIR exists
    checkIfDirectoryExist(out_dir)

    # Build path to save the file
    out_path = out_dir + 'edges.dat'

    # Write PETGEM edges in PETSc format
    writeParallelDenseMatrix(out_path, matrix, communicator=PETSc.COMM_SELF)

    # ---------- Export Edges to nodes ----------
    if rank == 0:
        PETSc.Sys.Print('  Edges connectivity (edgesNodes.dat)')

    # Get matrix dimensions
    size = edgesNodes.shape

    # Build PETSc structures
    matrix = createSequentialDenseMatrixWithArray(size[0], size[1], edgesNodes)

    # Delete unnecesary arrays
    del edgesNodes

    # Verify if OUT_DIR exists
    checkIfDirectoryExist(out_dir)

    # Build path to save the file
    out_path = out_dir + 'edgesNodes.dat'

    # Write PETGEM edgesNodes in PETSc format
    writeParallelDenseMatrix(out_path, matrix, communicator=PETSc.COMM_SELF)

    # ---------- Export boundaries ----------
    if rank == 0:
        PETSc.Sys.Print('  Boundaries (boundaries.dat)')

    # Build PETSc structures
    vector = createSequentialVectorWithArray(boundaries)

    # Delete unnecesary arrays
    del boundaries

    # Verify if OUT_DIR exists
    checkIfDirectoryExist(out_dir)

    # Build path to save the file
    out_path = out_dir + 'boundaries.dat'

    # Write PETGEM nodes in PETSc format
    writePetscVector(out_path, vector, communicator=PETSc.COMM_SELF)

    return nEdges, nDofs