def make_env_and_successful_return(self, test): env = ABC( discrete=False, episodic=self.episodic or test, deterministic=test, ) return env, 1
def make_env_and_successful_return(self, test): env = ABC( discrete=self.discrete, episodic=self.episodic or test, deterministic=test, partially_observable=self.recurrent, ) return env, 1
def make_env(process_idx, test): size = 2 return ABC( size=size, discrete=discrete, episodic=episodic or test, partially_observable=self.recurrent, deterministic=test, )
def make_env(process_idx, test): size = 2 return ABC( size=size, discrete=discrete, episodic=True, partially_observable=self.use_lstm, deterministic=test, )
def setUp(self): self.env = ABC(deterministic=True) self.obs_shape = self.env.observation_space.shape self.model = torch.nn.Sequential( torch.nn.Linear(self.obs_shape[0], 16), torch.nn.ReLU(), torch.nn.Linear(16, 16), torch.nn.ReLU(), torch.nn.Linear(16, 3), )
def make_env(): return ABC(discrete=self.discrete, deterministic=test)
def make_env_and_successful_return(self, test): return ABC(discrete=True, deterministic=test), 1
def make_env_and_successful_return(self, test): return ABC(discrete=True, partially_observable=True, deterministic=test), 1