Exemplo n.º 1
0
    def _test_training(self,
                       gpu,
                       steps=5000,
                       load_model=False,
                       require_success=True):

        random_seed.set_random_seed(1)
        logging.basicConfig(level=logging.DEBUG)

        env = self.make_env_and_successful_return(test=False)[0]
        test_env, successful_return = self.make_env_and_successful_return(
            test=True)
        agent = self.make_agent(env, gpu)

        if load_model:
            print("Load agent from", self.agent_dirname)
            agent.load(self.agent_dirname)
            agent.replay_buffer.load(self.rbuf_filename)

        # Train
        train_agent_with_evaluation(
            agent=agent,
            env=env,
            steps=steps,
            outdir=self.tmpdir,
            eval_interval=200,
            eval_n_steps=None,
            eval_n_episodes=5,
            successful_score=1,
            eval_env=test_env,
        )

        # Test
        n_test_runs = 5
        eval_returns = run_evaluation_episodes(
            test_env,
            agent,
            n_steps=None,
            n_episodes=n_test_runs,
        )
        n_succeeded = np.sum(np.asarray(eval_returns) >= successful_return)
        if require_success:
            assert n_succeeded == n_test_runs

        # Save
        agent.save(self.agent_dirname)
        agent.replay_buffer.save(self.rbuf_filename)
Exemplo n.º 2
0
    def _test_abc(self,
                  steps=100000,
                  require_success=True,
                  gpu=-1,
                  load_model=False):

        env, _ = self.make_env_and_successful_return(test=False)
        test_env, successful_return = self.make_env_and_successful_return(
            test=True)

        agent = self.make_agent(env, gpu)

        if load_model:
            print("Load agent from", self.agent_dirname)
            agent.load(self.agent_dirname)

        max_episode_len = None if self.episodic else 2

        # Train
        train_agent_with_evaluation(
            agent=agent,
            env=env,
            eval_env=test_env,
            steps=steps,
            outdir=self.tmpdir,
            eval_interval=200,
            eval_n_steps=None,
            eval_n_episodes=5,
            successful_score=successful_return,
            train_max_episode_len=max_episode_len,
        )

        # Test
        n_test_runs = 5
        eval_returns, _ = run_evaluation_episodes(
            test_env,
            agent,
            n_steps=None,
            n_episodes=n_test_runs,
            max_episode_len=max_episode_len,
        )
        if require_success:
            n_succeeded = np.sum(np.asarray(eval_returns) >= successful_return)
            assert n_succeeded == n_test_runs

        # Save
        agent.save(self.agent_dirname)
Exemplo n.º 3
0
    replay_start_size=5 * 10**4,
    #    replay_start_size=5*10**3,
    target_update_interval=10**4,
    clip_delta=True,
    update_interval=4,
    batch_accumulator="sum",
    phi=phi,
    gpu=0,
    episodic_update_len=4,
    recurrent=True)

if ns.demo:
    agent.load(ns.model)
    test_env = pfrl.wrappers.Render(test_env)
    test_env = sleep_wrapper.SleepWrapper(test_env, ns.sleep)
    experiments.eval_performance(env=test_env,
                                 agent=agent,
                                 n_steps=100000,
                                 n_episodes=None)
else:
    experiments.train_agent_with_evaluation(agent=agent,
                                            env=env,
                                            steps=ns.steps,
                                            eval_n_steps=None,
                                            checkpoint_freq=None,
                                            eval_n_episodes=10,
                                            eval_interval=100000,
                                            outdir=ns.model,
                                            eval_env=test_env,
                                            use_tensorboard=True)
Exemplo n.º 4
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--env", type=str, default="BreakoutNoFrameskip-v4")
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 31)")
    parser.add_argument("--gpu", type=int, default=0)
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load", type=str, default=None)
    parser.add_argument("--final-exploration-frames", type=int, default=10**6)
    parser.add_argument("--final-epsilon", type=float, default=0.1)
    parser.add_argument("--eval-epsilon", type=float, default=0.05)
    parser.add_argument("--steps", type=int, default=10**7)
    parser.add_argument(
        "--max-frames",
        type=int,
        default=30 * 60 * 60,  # 30 minutes with 60 fps
        help="Maximum number of frames for each episode.",
    )
    parser.add_argument("--replay-start-size", type=int, default=5 * 10**4)
    parser.add_argument("--target-update-interval", type=int, default=10**4)
    parser.add_argument("--eval-interval", type=int, default=10**5)
    parser.add_argument("--update-interval", type=int, default=4)
    parser.add_argument("--eval-n-runs", type=int, default=10)
    parser.add_argument("--batch-size", type=int, default=32)
    parser.add_argument(
        "--log-level",
        type=int,
        default=20,
        help="Logging level. 10:DEBUG, 20:INFO etc.",
    )
    parser.add_argument(
        "--render",
        action="store_true",
        default=False,
        help="Render env states in a GUI window.",
    )
    parser.add_argument(
        "--monitor",
        action="store_true",
        default=False,
        help=
        ("Monitor env. Videos and additional information are saved as output files."
         ),
    )
    args = parser.parse_args()

    import logging

    logging.basicConfig(level=args.log_level)

    # Set a random seed used in PFRL.
    utils.set_random_seed(args.seed)

    # Set different random seeds for train and test envs.
    train_seed = args.seed
    test_seed = 2**31 - 1 - args.seed

    args.outdir = experiments.prepare_output_dir(args, args.outdir)
    print("Output files are saved in {}".format(args.outdir))

    def make_env(test):
        # Use different random seeds for train and test envs
        env_seed = test_seed if test else train_seed
        env = atari_wrappers.wrap_deepmind(
            atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
            episode_life=not test,
            clip_rewards=not test,
        )
        env.seed(int(env_seed))
        if test:
            # Randomize actions like epsilon-greedy in evaluation as well
            env = pfrl.wrappers.RandomizeAction(env, args.eval_epsilon)
        if args.monitor:
            env = pfrl.wrappers.Monitor(
                env, args.outdir, mode="evaluation" if test else "training")
        if args.render:
            env = pfrl.wrappers.Render(env)
        return env

    env = make_env(test=False)
    eval_env = make_env(test=True)

    n_actions = env.action_space.n

    n_atoms = 51
    v_max = 10
    v_min = -10
    q_func = torch.nn.Sequential(
        pfrl.nn.LargeAtariCNN(),
        pfrl.q_functions.DistributionalFCStateQFunctionWithDiscreteAction(
            512,
            n_actions,
            n_atoms,
            v_min,
            v_max,
            n_hidden_channels=0,
            n_hidden_layers=0,
        ),
    )

    # Use the same hyper parameters as https://arxiv.org/abs/1707.06887
    opt = torch.optim.Adam(q_func.parameters(),
                           2.5e-4,
                           eps=1e-2 / args.batch_size)

    rbuf = replay_buffers.ReplayBuffer(10**6)

    explorer = explorers.LinearDecayEpsilonGreedy(
        1.0,
        args.final_epsilon,
        args.final_exploration_frames,
        lambda: np.random.randint(n_actions),
    )

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    agent = pfrl.agents.CategoricalDQN(
        q_func,
        opt,
        rbuf,
        gpu=args.gpu,
        gamma=0.99,
        explorer=explorer,
        replay_start_size=args.replay_start_size,
        target_update_interval=args.target_update_interval,
        update_interval=args.update_interval,
        batch_accumulator="mean",
        phi=phi,
    )

    if args.load:
        agent.load(args.load)

    if args.demo:
        eval_stats = experiments.eval_performance(env=eval_env,
                                                  agent=agent,
                                                  n_steps=None,
                                                  n_episodes=args.eval_n_runs)
        print("n_runs: {} mean: {} median: {} stdev {}".format(
            args.eval_n_runs,
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))
    else:
        experiments.train_agent_with_evaluation(
            agent=agent,
            env=env,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            outdir=args.outdir,
            save_best_so_far_agent=False,
            eval_env=eval_env,
        )
Exemplo n.º 5
0
def main():
    import logging

    logging.basicConfig(level=logging.INFO)

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--env", type=str, default="CartPole-v1")
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--gpu", type=int, default=0)
    parser.add_argument("--final-exploration-steps", type=int, default=1000)
    parser.add_argument("--start-epsilon", type=float, default=1.0)
    parser.add_argument("--end-epsilon", type=float, default=0.1)
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load", type=str, default=None)
    parser.add_argument("--steps", type=int, default=10**8)
    parser.add_argument("--prioritized-replay", action="store_true")
    parser.add_argument("--replay-start-size", type=int, default=50)
    parser.add_argument("--target-update-interval", type=int, default=100)
    parser.add_argument("--target-update-method", type=str, default="hard")
    parser.add_argument("--soft-update-tau", type=float, default=1e-2)
    parser.add_argument("--update-interval", type=int, default=1)
    parser.add_argument("--eval-n-runs", type=int, default=100)
    parser.add_argument("--eval-interval", type=int, default=1000)
    parser.add_argument("--n-hidden-channels", type=int, default=12)
    parser.add_argument("--n-hidden-layers", type=int, default=3)
    parser.add_argument("--gamma", type=float, default=0.95)
    parser.add_argument("--minibatch-size", type=int, default=None)
    parser.add_argument("--render-train", action="store_true")
    parser.add_argument("--render-eval", action="store_true")
    parser.add_argument("--monitor", action="store_true")
    parser.add_argument("--reward-scale-factor", type=float, default=1.0)
    args = parser.parse_args()

    # Set a random seed used in PFRL
    utils.set_random_seed(args.seed)

    args.outdir = experiments.prepare_output_dir(args,
                                                 args.outdir,
                                                 argv=sys.argv)
    print("Output files are saved in {}".format(args.outdir))

    def make_env(test):
        env = gym.make(args.env)
        env_seed = 2**32 - 1 - args.seed if test else args.seed
        env.seed(env_seed)
        # Cast observations to float32 because our model uses float32
        env = pfrl.wrappers.CastObservationToFloat32(env)
        if args.monitor:
            env = pfrl.wrappers.Monitor(env, args.outdir)
        if not test:
            # Scale rewards (and thus returns) to a reasonable range so that
            # training is easier
            env = pfrl.wrappers.ScaleReward(env, args.reward_scale_factor)
        if (args.render_eval and test) or (args.render_train and not test):
            env = pfrl.wrappers.Render(env)
        return env

    env = make_env(test=False)
    timestep_limit = env.spec.max_episode_steps
    obs_size = env.observation_space.low.size
    action_space = env.action_space

    n_atoms = 51
    v_max = 500
    v_min = 0

    n_actions = action_space.n
    q_func = q_functions.DistributionalFCStateQFunctionWithDiscreteAction(
        obs_size,
        n_actions,
        n_atoms,
        v_min,
        v_max,
        n_hidden_channels=args.n_hidden_channels,
        n_hidden_layers=args.n_hidden_layers,
    )
    # Use epsilon-greedy for exploration
    explorer = explorers.LinearDecayEpsilonGreedy(
        args.start_epsilon,
        args.end_epsilon,
        args.final_exploration_steps,
        action_space.sample,
    )

    opt = torch.optim.Adam(q_func.parameters(), 1e-3)

    rbuf_capacity = 50000  # 5 * 10 ** 5
    if args.minibatch_size is None:
        args.minibatch_size = 32
    if args.prioritized_replay:
        betasteps = (args.steps -
                     args.replay_start_size) // args.update_interval
        rbuf = replay_buffers.PrioritizedReplayBuffer(rbuf_capacity,
                                                      betasteps=betasteps)
    else:
        rbuf = replay_buffers.ReplayBuffer(rbuf_capacity)

    agent = pfrl.agents.CategoricalDQN(
        q_func,
        opt,
        rbuf,
        gpu=args.gpu,
        gamma=args.gamma,
        explorer=explorer,
        replay_start_size=args.replay_start_size,
        target_update_interval=args.target_update_interval,
        update_interval=args.update_interval,
        minibatch_size=args.minibatch_size,
        target_update_method=args.target_update_method,
        soft_update_tau=args.soft_update_tau,
    )

    if args.load:
        agent.load(args.load)

    eval_env = make_env(test=True)

    if args.demo:
        eval_stats = experiments.eval_performance(
            env=eval_env,
            agent=agent,
            n_steps=None,
            n_episodes=args.eval_n_runs,
            max_episode_len=timestep_limit,
        )
        print("n_runs: {} mean: {} median: {} stdev {}".format(
            args.eval_n_runs,
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))
    else:
        experiments.train_agent_with_evaluation(
            agent=agent,
            env=env,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            outdir=args.outdir,
            eval_env=eval_env,
            train_max_episode_len=timestep_limit,
        )
Exemplo n.º 6
0
def _objective_core(
    # optuna parameters
    trial,
    # training parameters
    env_id,
    outdir,
    seed,
    monitor,
    gpu,
    steps,
    train_max_episode_len,
    eval_n_episodes,
    eval_interval,
    batch_size,
    # hyperparameters
    hyperparams,
):
    # Set a random seed used in PFRL
    utils.set_random_seed(seed)

    # Set different random seeds for train and test envs.
    train_seed = seed
    test_seed = 2**31 - 1 - seed

    def make_env(test=False):
        env = gym.make(env_id)

        if not isinstance(env.observation_space, gym.spaces.Box):
            raise ValueError(
                "Supported only Box observation environments, but given: {}".format(
                    env.observation_space
                )
            )
        if len(env.observation_space.shape) != 1:
            raise ValueError(
                "Supported only observation spaces with ndim==1, but given: {}".format(
                    env.observation_space.shape
                )
            )
        if not isinstance(env.action_space, gym.spaces.Discrete):
            raise ValueError(
                "Supported only discrete action environments, but given: {}".format(
                    env.action_space
                )
            )

        env_seed = test_seed if test else train_seed
        env.seed(env_seed)
        # Cast observations to float32 because our model uses float32
        env = pfrl.wrappers.CastObservationToFloat32(env)
        if monitor:
            env = pfrl.wrappers.Monitor(env, outdir)
        if not test:
            # Scale rewards (and thus returns) to a reasonable range so that
            # training is easier
            env = pfrl.wrappers.ScaleReward(env, hyperparams["reward_scale_factor"])
        return env

    env = make_env(test=False)
    obs_space = env.observation_space
    obs_size = obs_space.low.size
    action_space = env.action_space
    n_actions = action_space.n

    # create model & q_function
    model = MLP(
        in_size=obs_size, out_size=n_actions, hidden_sizes=hyperparams["hidden_sizes"]
    )
    q_func = q_functions.SingleModelStateQFunctionWithDiscreteAction(model=model)

    # Use epsilon-greedy for exploration
    start_epsilon = 1
    explorer = explorers.LinearDecayEpsilonGreedy(
        start_epsilon=start_epsilon,
        end_epsilon=hyperparams["end_epsilon"],
        decay_steps=hyperparams["decay_steps"],
        random_action_func=action_space.sample,
    )

    opt = optim.Adam(
        q_func.parameters(), lr=hyperparams["lr"], eps=hyperparams["adam_eps"]
    )

    rbuf_capacity = steps
    rbuf = replay_buffers.ReplayBuffer(rbuf_capacity)

    agent = DQN(
        q_func,
        opt,
        rbuf,
        gpu=gpu,
        gamma=hyperparams["gamma"],
        explorer=explorer,
        replay_start_size=hyperparams["replay_start_size"],
        target_update_interval=hyperparams["target_update_interval"],
        update_interval=hyperparams["update_interval"],
        minibatch_size=batch_size,
    )

    eval_env = make_env(test=True)

    evaluation_hooks = [OptunaPrunerHook(trial=trial)]
    _, eval_stats_history = experiments.train_agent_with_evaluation(
        agent=agent,
        env=env,
        steps=steps,
        eval_n_steps=None,
        eval_n_episodes=eval_n_episodes,
        eval_interval=eval_interval,
        outdir=outdir,
        eval_env=eval_env,
        train_max_episode_len=train_max_episode_len,
        evaluation_hooks=evaluation_hooks,
    )

    score = _get_score_from_eval_stats_history(eval_stats_history)

    return score
Exemplo n.º 7
0
def main():
    import logging

    logging.basicConfig(level=logging.INFO)

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--env", type=str, default="Pendulum-v0")
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 32)")
    parser.add_argument("--gpu", type=int, default=0)
    parser.add_argument("--final-exploration-steps", type=int, default=10**4)
    parser.add_argument("--start-epsilon", type=float, default=1.0)
    parser.add_argument("--end-epsilon", type=float, default=0.1)
    parser.add_argument("--noisy-net-sigma", type=float, default=None)
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load", type=str, default=None)
    parser.add_argument("--steps", type=int, default=10**5)
    parser.add_argument("--prioritized-replay", action="store_true")
    parser.add_argument("--replay-start-size", type=int, default=1000)
    parser.add_argument("--target-update-interval", type=int, default=10**2)
    parser.add_argument("--target-update-method", type=str, default="hard")
    parser.add_argument("--soft-update-tau", type=float, default=1e-2)
    parser.add_argument("--update-interval", type=int, default=1)
    parser.add_argument("--eval-n-runs", type=int, default=100)
    parser.add_argument("--eval-interval", type=int, default=10**4)
    parser.add_argument("--n-hidden-channels", type=int, default=100)
    parser.add_argument("--n-hidden-layers", type=int, default=2)
    parser.add_argument("--gamma", type=float, default=0.99)
    parser.add_argument("--minibatch-size", type=int, default=None)
    parser.add_argument("--render-train", action="store_true")
    parser.add_argument("--render-eval", action="store_true")
    parser.add_argument("--monitor", action="store_true")
    parser.add_argument("--reward-scale-factor", type=float, default=1e-3)
    parser.add_argument(
        "--actor-learner",
        action="store_true",
        help="Enable asynchronous sampling with asynchronous actor(s)",
    )  # NOQA
    parser.add_argument(
        "--num-envs",
        type=int,
        default=1,
        help=("The number of environments for sampling (only effective with"
              " --actor-learner enabled)"),
    )  # NOQA
    args = parser.parse_args()

    # Set a random seed used in PFRL
    utils.set_random_seed(args.seed)

    args.outdir = experiments.prepare_output_dir(args,
                                                 args.outdir,
                                                 argv=sys.argv)
    print("Output files are saved in {}".format(args.outdir))

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs
    assert process_seeds.max() < 2**32

    def clip_action_filter(a):
        return np.clip(a, action_space.low, action_space.high)

    def make_env(idx=0, test=False):
        env = gym.make(args.env)
        # Use different random seeds for train and test envs
        process_seed = int(process_seeds[idx])
        env_seed = 2**32 - 1 - process_seed if test else process_seed
        utils.set_random_seed(env_seed)
        # Cast observations to float32 because our model uses float32
        env = pfrl.wrappers.CastObservationToFloat32(env)
        if args.monitor:
            env = pfrl.wrappers.Monitor(env, args.outdir)
        if isinstance(env.action_space, spaces.Box):
            utils.env_modifiers.make_action_filtered(env, clip_action_filter)
        if not test:
            # Scale rewards (and thus returns) to a reasonable range so that
            # training is easier
            env = pfrl.wrappers.ScaleReward(env, args.reward_scale_factor)
        if (args.render_eval and test) or (args.render_train and not test):
            env = pfrl.wrappers.Render(env)
        return env

    env = make_env(test=False)
    timestep_limit = env.spec.max_episode_steps
    obs_space = env.observation_space
    obs_size = obs_space.low.size
    action_space = env.action_space

    if isinstance(action_space, spaces.Box):
        action_size = action_space.low.size
        # Use NAF to apply DQN to continuous action spaces
        q_func = q_functions.FCQuadraticStateQFunction(
            obs_size,
            action_size,
            n_hidden_channels=args.n_hidden_channels,
            n_hidden_layers=args.n_hidden_layers,
            action_space=action_space,
        )
        # Use the Ornstein-Uhlenbeck process for exploration
        ou_sigma = (action_space.high - action_space.low) * 0.2
        explorer = explorers.AdditiveOU(sigma=ou_sigma)
    else:
        n_actions = action_space.n
        q_func = q_functions.FCStateQFunctionWithDiscreteAction(
            obs_size,
            n_actions,
            n_hidden_channels=args.n_hidden_channels,
            n_hidden_layers=args.n_hidden_layers,
        )
        # Use epsilon-greedy for exploration
        explorer = explorers.LinearDecayEpsilonGreedy(
            args.start_epsilon,
            args.end_epsilon,
            args.final_exploration_steps,
            action_space.sample,
        )

    if args.noisy_net_sigma is not None:
        pnn.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma)
        # Turn off explorer
        explorer = explorers.Greedy()

    opt = optim.Adam(q_func.parameters())

    rbuf_capacity = 5 * 10**5
    if args.minibatch_size is None:
        args.minibatch_size = 32
    if args.prioritized_replay:
        betasteps = (args.steps -
                     args.replay_start_size) // args.update_interval
        rbuf = replay_buffers.PrioritizedReplayBuffer(rbuf_capacity,
                                                      betasteps=betasteps)
    else:
        rbuf = replay_buffers.ReplayBuffer(rbuf_capacity)

    agent = DQN(
        q_func,
        opt,
        rbuf,
        gpu=args.gpu,
        gamma=args.gamma,
        explorer=explorer,
        replay_start_size=args.replay_start_size,
        target_update_interval=args.target_update_interval,
        update_interval=args.update_interval,
        minibatch_size=args.minibatch_size,
        target_update_method=args.target_update_method,
        soft_update_tau=args.soft_update_tau,
    )

    if args.load:
        agent.load(args.load)

    eval_env = make_env(test=True)

    if args.demo:
        eval_stats = experiments.eval_performance(
            env=eval_env,
            agent=agent,
            n_steps=None,
            n_episodes=args.eval_n_runs,
            max_episode_len=timestep_limit,
        )
        print("n_runs: {} mean: {} median: {} stdev {}".format(
            args.eval_n_runs,
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))

    elif not args.actor_learner:

        print(
            "WARNING: Since https://github.com/pfnet/pfrl/pull/112 we have started"
            " setting `eval_during_episode=True` in this script, which affects the"
            " timings of evaluation phases.")

        experiments.train_agent_with_evaluation(
            agent=agent,
            env=env,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            outdir=args.outdir,
            eval_env=eval_env,
            train_max_episode_len=timestep_limit,
            eval_during_episode=True,
        )
    else:
        # using impala mode when given num of envs

        # When we use multiple envs, it is critical to ensure each env
        # can occupy a CPU core to get the best performance.
        # Therefore, we need to prevent potential CPU over-provision caused by
        # multi-threading in Openmp and Numpy.
        # Disable the multi-threading on Openmp and Numpy.
        os.environ["OMP_NUM_THREADS"] = "1"  # NOQA

        (
            make_actor,
            learner,
            poller,
            exception_event,
        ) = agent.setup_actor_learner_training(args.num_envs)

        poller.start()
        learner.start()

        experiments.train_agent_async(
            processes=args.num_envs,
            make_agent=make_actor,
            make_env=make_env,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            outdir=args.outdir,
            stop_event=learner.stop_event,
            exception_event=exception_event,
        )

        poller.stop()
        learner.stop()
        poller.join()
        learner.join()
Exemplo n.º 8
0
def main():
    import logging

    parser = argparse.ArgumentParser()
    parser.add_argument("--gpu",
                        type=int,
                        default=0,
                        help="GPU to use, set to -1 if no GPU.")
    parser.add_argument("--num-envs",
                        type=int,
                        default=1,
                        help="Number of envs run in parallel.")
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 32)")
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument(
        "--steps",
        type=int,
        default=2 * 10**6,
        help="Total number of timesteps to train the agent.",
    )
    parser.add_argument(
        "--eval-interval",
        type=int,
        default=100000,
        help="Interval in timesteps between evaluations.",
    )
    parser.add_argument(
        "--eval-n-runs",
        type=int,
        default=100,
        help="Number of episodes run for each evaluation.",
    )
    parser.add_argument("--render",
                        action="store_true",
                        help="Render env states in a GUI window.")
    parser.add_argument("--demo",
                        action="store_true",
                        help="Just run evaluation, not training.")
    parser.add_argument("--load-pretrained",
                        action="store_true",
                        default=False)
    parser.add_argument("--load",
                        type=str,
                        default="",
                        help="Directory to load agent from.")
    parser.add_argument("--log-level",
                        type=int,
                        default=logging.INFO,
                        help="Level of the root logger.")
    parser.add_argument("--monitor",
                        action="store_true",
                        help="Wrap env with gym.wrappers.Monitor.")
    parser.add_argument(
        "--log-interval",
        type=int,
        default=1000,
        help=
        "Interval in timesteps between outputting log messages during training",
    )
    parser.add_argument(
        "--update-interval",
        type=int,
        default=2048,
        help="Interval in timesteps between model updates.",
    )
    parser.add_argument(
        "--epochs",
        type=int,
        default=10,
        help="Number of epochs to update model for per PPO iteration.",
    )
    parser.add_argument("--batch-size",
                        type=int,
                        default=64,
                        help="Minibatch size")
    current_dir = os.path.dirname(os.path.realpath(__file__))
    parser.add_argument('--cfg',
                        type=str,
                        default=os.path.abspath(
                            os.path.join(current_dir, "raisimlib",
                                         "raisimGymTorch", "raisimGymTorch",
                                         "env", "envs", "rsg_anymal",
                                         "cfg.yaml")),
                        help='configuration file')
    cfg_abs_path = parser.parse_args().cfg
    cfg = YAML().load(open(cfg_abs_path, 'r'))

    args = parser.parse_args()

    logging.basicConfig(level=args.log_level)

    # Set a random seed used in PFRL
    utils.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs
    assert process_seeds.max() < 2**31

    args.outdir = experiments.prepare_output_dir(args, args.outdir)

    def make_env(process_idx, test):
        visualize = True if process_idx == 0 and args.render else False
        env = myEnv(os.path.join(current_dir, "raisimlib", "rsc"), cfg,
                    visualize)

        # Use different random seeds for train and test envs
        process_seed = int(process_seeds[process_idx])
        env_seed = 2**31 - 1 - process_seed if test else process_seed
        env.seed(env_seed)
        # Cast observations to float32 because our model uses float32
        env = pfrl.wrappers.CastObservationToFloat32(env)
        env = NormalizeObsSpace(env)
        env = pfrl.wrappers.NormalizeActionSpace(env)
        if args.monitor:
            env = pfrl.wrappers.Monitor(env, args.outdir)
        return env

    def make_batch_env(test):
        return pfrl.envs.MultiprocessVectorEnv([
            functools.partial(make_env, idx, test)
            for idx, env in enumerate(range(args.num_envs))
        ])

    # Only for getting timesteps, and obs-action spaces
    sample_env = myEnv(os.path.join(current_dir, "raisimlib", "rsc"), cfg,
                       False)
    timestep_limit = 100000  #sample_env.spec.max_episode_steps
    obs_space = sample_env.observation_space
    action_space = sample_env.action_space
    print("Observation space:", obs_space)
    print("Action space:", action_space)

    assert isinstance(action_space, gym.spaces.Box)

    # Normalize observations based on their empirical mean and variance
    obs_normalizer = pfrl.nn.EmpiricalNormalization(obs_space.low.size,
                                                    clip_threshold=5)

    obs_size = obs_space.low.size
    action_size = action_space.low.size
    policy = torch.nn.Sequential(
        nn.Linear(obs_size, 64),
        nn.Tanh(),
        nn.Linear(64, 64),
        nn.Tanh(),
        nn.Linear(64, action_size),
        pfrl.policies.GaussianHeadWithStateIndependentCovariance(
            action_size=action_size,
            var_type="diagonal",
            var_func=lambda x: torch.exp(2 * x),  # Parameterize log std
            var_param_init=0,  # log std = 0 => std = 1
        ),
    )

    vf = torch.nn.Sequential(
        nn.Linear(obs_size, 64),
        nn.Tanh(),
        nn.Linear(64, 64),
        nn.Tanh(),
        nn.Linear(64, 1),
    )

    # While the original paper initialized weights by normal distribution,
    # we use orthogonal initialization as the latest openai/baselines does.
    def ortho_init(layer, gain):
        nn.init.orthogonal_(layer.weight, gain=gain)
        nn.init.zeros_(layer.bias)

    ortho_init(policy[0], gain=1)
    ortho_init(policy[2], gain=1)
    ortho_init(policy[4], gain=1e-2)
    ortho_init(vf[0], gain=1)
    ortho_init(vf[2], gain=1)
    ortho_init(vf[4], gain=1)

    # Combine a policy and a value function into a single model
    model = pfrl.nn.Branched(policy, vf)

    opt = torch.optim.Adam(model.parameters(), lr=3e-4, eps=1e-5)

    agent = PPO(
        model,
        opt,
        obs_normalizer=obs_normalizer,
        gpu=args.gpu,
        update_interval=args.update_interval,
        minibatch_size=args.batch_size,
        epochs=args.epochs,
        clip_eps_vf=None,
        entropy_coef=0,
        standardize_advantages=True,
        gamma=0.998,
        lambd=0.95,
    )

    if args.load or args.load_pretrained:
        if args.load_pretrained:
            raise Exception("Pretrained models are currently unsupported.")
        # either load or load_pretrained must be false
        assert not args.load or not args.load_pretrained
        if args.load:
            agent.load(args.load)
        else:
            agent.load(
                utils.download_model("PPO", args.env, model_type="final")[0])

    if args.demo:
        env = make_env(0, True)
        eval_stats = experiments.eval_performance(
            env=env,
            agent=agent,
            n_steps=None,
            n_episodes=args.eval_n_runs,
            max_episode_len=timestep_limit,
        )
        print("n_runs: {} mean: {} median: {} stdev {}".format(
            args.eval_n_runs,
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))
    elif args.num_envs == 1:
        experiments.train_agent_with_evaluation(
            agent=agent,
            env=make_env(0, False),
            eval_env=make_env(0, True),
            outdir=args.outdir,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            save_best_so_far_agent=True,
            use_tensorboard=True)
    else:
        experiments.train_agent_batch_with_evaluation(
            agent=agent,
            env=make_batch_env(False),
            eval_env=make_batch_env(True),
            outdir=args.outdir,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            log_interval=args.log_interval,
            max_episode_len=timestep_limit,
            save_best_so_far_agent=True,
        )
Exemplo n.º 9
0
def main():

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument(
        "--env",
        type=str,
        default="Hopper-v2",
        help="OpenAI Gym MuJoCo env to perform algorithm on.",
    )
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 32)")
    parser.add_argument("--gpu",
                        type=int,
                        default=0,
                        help="GPU to use, set to -1 if no GPU.")
    parser.add_argument("--load",
                        type=str,
                        default="",
                        help="Directory to load agent from.")
    parser.add_argument(
        "--steps",
        type=int,
        default=10**6,
        help="Total number of timesteps to train the agent.",
    )
    parser.add_argument(
        "--eval-n-runs",
        type=int,
        default=10,
        help="Number of episodes run for each evaluation.",
    )
    parser.add_argument(
        "--eval-interval",
        type=int,
        default=5000,
        help="Interval in timesteps between evaluations.",
    )
    parser.add_argument(
        "--replay-start-size",
        type=int,
        default=10000,
        help="Minimum replay buffer size before " +
        "performing gradient updates.",
    )
    parser.add_argument("--batch-size",
                        type=int,
                        default=100,
                        help="Minibatch size")
    parser.add_argument("--render",
                        action="store_true",
                        help="Render env states in a GUI window.")
    parser.add_argument("--demo",
                        action="store_true",
                        help="Just run evaluation, not training.")
    parser.add_argument("--load-pretrained",
                        action="store_true",
                        default=False)
    parser.add_argument("--pretrained-type",
                        type=str,
                        default="best",
                        choices=["best", "final"])
    parser.add_argument("--monitor",
                        action="store_true",
                        help="Wrap env with gym.wrappers.Monitor.")
    parser.add_argument("--log-level",
                        type=int,
                        default=logging.INFO,
                        help="Level of the root logger.")
    args = parser.parse_args()

    logging.basicConfig(level=args.log_level)

    args.outdir = experiments.prepare_output_dir(args,
                                                 args.outdir,
                                                 argv=sys.argv)
    print("Output files are saved in {}".format(args.outdir))

    # Set a random seed used in PFRL
    utils.set_random_seed(args.seed)

    def make_env(test):
        env = gym.make(args.env)
        # Unwrap TimeLimit wrapper
        assert isinstance(env, gym.wrappers.TimeLimit)
        env = env.env
        # Use different random seeds for train and test envs
        env_seed = 2**32 - 1 - args.seed if test else args.seed
        env.seed(env_seed)
        # Cast observations to float32 because our model uses float32
        env = pfrl.wrappers.CastObservationToFloat32(env)
        if args.monitor:
            env = pfrl.wrappers.Monitor(env, args.outdir)
        if args.render and not test:
            env = pfrl.wrappers.Render(env)
        return env

    env = make_env(test=False)
    timestep_limit = env.spec.max_episode_steps
    obs_space = env.observation_space
    action_space = env.action_space
    print("Observation space:", obs_space)
    print("Action space:", action_space)

    obs_size = obs_space.low.size
    action_size = action_space.low.size

    policy = nn.Sequential(
        nn.Linear(obs_size, 400),
        nn.ReLU(),
        nn.Linear(400, 300),
        nn.ReLU(),
        nn.Linear(300, action_size),
        nn.Tanh(),
        pfrl.policies.DeterministicHead(),
    )
    policy_optimizer = torch.optim.Adam(policy.parameters())

    def make_q_func_with_optimizer():
        q_func = nn.Sequential(
            pfrl.nn.ConcatObsAndAction(),
            nn.Linear(obs_size + action_size, 400),
            nn.ReLU(),
            nn.Linear(400, 300),
            nn.ReLU(),
            nn.Linear(300, 1),
        )
        q_func_optimizer = torch.optim.Adam(q_func.parameters())
        return q_func, q_func_optimizer

    q_func1, q_func1_optimizer = make_q_func_with_optimizer()
    q_func2, q_func2_optimizer = make_q_func_with_optimizer()

    rbuf = replay_buffers.ReplayBuffer(10**6)

    explorer = explorers.AdditiveGaussian(scale=0.1,
                                          low=action_space.low,
                                          high=action_space.high)

    def burnin_action_func():
        """Select random actions until model is updated one or more times."""
        return np.random.uniform(action_space.low,
                                 action_space.high).astype(np.float32)

    # Hyperparameters in http://arxiv.org/abs/1802.09477
    agent = pfrl.agents.TD3(
        policy,
        q_func1,
        q_func2,
        policy_optimizer,
        q_func1_optimizer,
        q_func2_optimizer,
        rbuf,
        gamma=0.99,
        soft_update_tau=5e-3,
        explorer=explorer,
        replay_start_size=args.replay_start_size,
        gpu=args.gpu,
        minibatch_size=args.batch_size,
        burnin_action_func=burnin_action_func,
    )

    if len(args.load) > 0 or args.load_pretrained:
        # either load or load_pretrained must be false
        assert not len(args.load) > 0 or not args.load_pretrained
        if len(args.load) > 0:
            agent.load(args.load)
        else:
            agent.load(
                utils.download_model("TD3",
                                     args.env,
                                     model_type=args.pretrained_type)[0])

    eval_env = make_env(test=True)
    if args.demo:
        eval_stats = experiments.eval_performance(
            env=eval_env,
            agent=agent,
            n_steps=None,
            n_episodes=args.eval_n_runs,
            max_episode_len=timestep_limit,
        )
        print("n_runs: {} mean: {} median: {} stdev {}".format(
            args.eval_n_runs,
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))
        import json
        import os

        with open(os.path.join(args.outdir, "demo_scores.json"), "w") as f:
            json.dump(eval_stats, f)
    else:
        experiments.train_agent_with_evaluation(
            agent=agent,
            env=env,
            steps=args.steps,
            eval_env=eval_env,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            outdir=args.outdir,
            train_max_episode_len=timestep_limit,
        )
Exemplo n.º 10
0
def main():
    import logging

    parser = argparse.ArgumentParser()
    parser.add_argument("--env", type=str, default="CartPole-v0")
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 32)")
    parser.add_argument("--gpu", type=int, default=0)
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--beta", type=float, default=1e-4)
    parser.add_argument("--batchsize", type=int, default=10)
    parser.add_argument("--steps", type=int, default=10**5)
    parser.add_argument("--eval-interval", type=int, default=10**4)
    parser.add_argument("--eval-n-runs", type=int, default=100)
    parser.add_argument("--reward-scale-factor", type=float, default=1e-2)
    parser.add_argument("--render", action="store_true", default=False)
    parser.add_argument("--lr", type=float, default=1e-3)
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load", type=str, default="")
    parser.add_argument("--log-level", type=int, default=logging.INFO)
    parser.add_argument("--monitor", action="store_true")
    args = parser.parse_args()

    logging.basicConfig(level=args.log_level)

    # Set a random seed used in PFRL.
    utils.set_random_seed(args.seed)

    args.outdir = experiments.prepare_output_dir(args, args.outdir)

    def make_env(test):
        env = gym.make(args.env)
        # Use different random seeds for train and test envs
        env_seed = 2**32 - 1 - args.seed if test else args.seed
        env.seed(env_seed)
        # Cast observations to float32 because our model uses float32
        env = pfrl.wrappers.CastObservationToFloat32(env)
        if args.monitor:
            env = pfrl.wrappers.Monitor(env, args.outdir)
        if not test:
            # Scale rewards (and thus returns) to a reasonable range so that
            # training is easier
            env = pfrl.wrappers.ScaleReward(env, args.reward_scale_factor)
        if args.render and not test:
            env = pfrl.wrappers.Render(env)
        return env

    train_env = make_env(test=False)
    timestep_limit = train_env.spec.max_episode_steps
    obs_space = train_env.observation_space
    action_space = train_env.action_space

    obs_size = obs_space.low.size
    hidden_size = 200
    # Switch policy types accordingly to action space types
    if isinstance(action_space, gym.spaces.Box):
        model = nn.Sequential(
            nn.Linear(obs_size, hidden_size),
            nn.LeakyReLU(0.2),
            nn.Linear(hidden_size, hidden_size),
            nn.LeakyReLU(0.2),
            nn.Linear(hidden_size, action_space.low.size),
            GaussianHeadWithFixedCovariance(0.3),
        )
    else:
        model = nn.Sequential(
            nn.Linear(obs_size, hidden_size),
            nn.LeakyReLU(0.2),
            nn.Linear(hidden_size, hidden_size),
            nn.LeakyReLU(0.2),
            nn.Linear(hidden_size, action_space.n),
            SoftmaxCategoricalHead(),
        )

    opt = torch.optim.Adam(model.parameters(), lr=args.lr)

    agent = pfrl.agents.REINFORCE(
        model,
        opt,
        gpu=args.gpu,
        beta=args.beta,
        batchsize=args.batchsize,
        max_grad_norm=1.0,
    )
    if args.load:
        agent.load(args.load)

    eval_env = make_env(test=True)

    if args.demo:
        eval_stats = experiments.eval_performance(
            env=eval_env,
            agent=agent,
            n_steps=None,
            n_episodes=args.eval_n_runs,
            max_episode_len=timestep_limit,
        )
        print("n_runs: {} mean: {} median: {} stdev {}".format(
            args.eval_n_runs,
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))
    else:
        experiments.train_agent_with_evaluation(
            agent=agent,
            env=train_env,
            eval_env=eval_env,
            outdir=args.outdir,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            train_max_episode_len=timestep_limit,
        )
Exemplo n.º 11
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--env",
        type=str,
        default="BreakoutNoFrameskip-v4",
        help="OpenAI Atari domain to perform algorithm on.",
    )
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 31)")
    parser.add_argument("--gpu",
                        type=int,
                        default=0,
                        help="GPU to use, set to -1 if no GPU.")
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load-pretrained",
                        action="store_true",
                        default=False)
    parser.add_argument("--pretrained-type",
                        type=str,
                        default="best",
                        choices=["best", "final"])
    parser.add_argument("--load", type=str, default=None)
    parser.add_argument(
        "--log-level",
        type=int,
        default=20,
        help="Logging level. 10:DEBUG, 20:INFO etc.",
    )
    parser.add_argument(
        "--render",
        action="store_true",
        default=False,
        help="Render env states in a GUI window.",
    )
    parser.add_argument(
        "--monitor",
        action="store_true",
        default=False,
        help=
        ("Monitor env. Videos and additional information are saved as output files."
         ),
    )
    parser.add_argument(
        "--steps",
        type=int,
        default=5 * 10**7,
        help="Total number of timesteps to train the agent.",
    )
    parser.add_argument(
        "--replay-start-size",
        type=int,
        default=5 * 10**4,
        help="Minimum replay buffer size before " +
        "performing gradient updates.",
    )
    parser.add_argument("--eval-n-steps", type=int, default=125000)
    parser.add_argument("--eval-interval", type=int, default=250000)
    parser.add_argument("--n-best-episodes", type=int, default=30)
    args = parser.parse_args()

    import logging

    logging.basicConfig(level=args.log_level)

    # Set a random seed used in PFRL.
    utils.set_random_seed(args.seed)

    # Set different random seeds for train and test envs.
    train_seed = args.seed
    test_seed = 2**31 - 1 - args.seed

    args.outdir = experiments.prepare_output_dir(args, args.outdir)
    print("Output files are saved in {}".format(args.outdir))

    def make_env(test):
        # Use different random seeds for train and test envs
        env_seed = test_seed if test else train_seed
        env = atari_wrappers.wrap_deepmind(
            atari_wrappers.make_atari(args.env, max_frames=None),
            episode_life=not test,
            clip_rewards=not test,
        )
        env.seed(int(env_seed))
        if test:
            # Randomize actions like epsilon-greedy in evaluation as well
            env = pfrl.wrappers.RandomizeAction(env, 0.05)
        if args.monitor:
            env = pfrl.wrappers.Monitor(
                env, args.outdir, mode="evaluation" if test else "training")
        if args.render:
            env = pfrl.wrappers.Render(env)
        return env

    env = make_env(test=False)
    eval_env = make_env(test=True)

    n_actions = env.action_space.n
    q_func = nn.Sequential(
        pnn.LargeAtariCNN(),
        init_chainer_default(nn.Linear(512, n_actions)),
        DiscreteActionValueHead(),
    )

    # Use the same hyperparameters as the Nature paper

    opt = pfrl.optimizers.RMSpropEpsInsideSqrt(
        q_func.parameters(),
        lr=2.5e-4,
        alpha=0.95,
        momentum=0.0,
        eps=1e-2,
        centered=True,
    )

    rbuf = replay_buffers.ReplayBuffer(10**6)

    explorer = explorers.LinearDecayEpsilonGreedy(
        start_epsilon=1.0,
        end_epsilon=0.1,
        decay_steps=10**6,
        random_action_func=lambda: np.random.randint(n_actions),
    )

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    Agent = agents.DQN
    agent = Agent(
        q_func,
        opt,
        rbuf,
        gpu=args.gpu,
        gamma=0.99,
        explorer=explorer,
        replay_start_size=args.replay_start_size,
        target_update_interval=10**4,
        clip_delta=True,
        update_interval=4,
        batch_accumulator="sum",
        phi=phi,
    )

    if args.load or args.load_pretrained:
        # either load or load_pretrained must be false
        assert not args.load or not args.load_pretrained
        if args.load:
            agent.load(args.load)
        else:
            agent.load(
                utils.download_model("DQN",
                                     args.env,
                                     model_type=args.pretrained_type)[0])

    if args.demo:
        eval_stats = experiments.eval_performance(env=eval_env,
                                                  agent=agent,
                                                  n_steps=args.eval_n_steps,
                                                  n_episodes=None)
        print("n_episodes: {} mean: {} median: {} stdev {}".format(
            eval_stats["episodes"],
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))
    else:
        experiments.train_agent_with_evaluation(
            agent=agent,
            env=env,
            steps=args.steps,
            eval_n_steps=args.eval_n_steps,
            eval_n_episodes=None,
            eval_interval=args.eval_interval,
            outdir=args.outdir,
            save_best_so_far_agent=True,
            eval_env=eval_env,
        )

        dir_of_best_network = os.path.join(args.outdir, "best")
        agent.load(dir_of_best_network)

        # run 30 evaluation episodes, each capped at 5 mins of play
        stats = experiments.evaluator.eval_performance(
            env=eval_env,
            agent=agent,
            n_steps=None,
            n_episodes=args.n_best_episodes,
            max_episode_len=4500,
            logger=None,
        )
        with open(os.path.join(args.outdir, "bestscores.json"), "w") as f:
            json.dump(stats, f)
        print("The results of the best scoring network:")
        for stat in stats:
            print(str(stat) + ":" + str(stats[stat]))
Exemplo n.º 12
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--env", type=str, default="BreakoutNoFrameskip-v4")
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 31)")
    parser.add_argument("--gpu", type=int, default=0)
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load-pretrained",
                        action="store_true",
                        default=False)
    parser.add_argument("--pretrained-type",
                        type=str,
                        default="best",
                        choices=["best", "final"])
    parser.add_argument("--load", type=str, default=None)
    parser.add_argument("--final-exploration-frames", type=int, default=10**6)
    parser.add_argument("--final-epsilon", type=float, default=0.01)
    parser.add_argument("--eval-epsilon", type=float, default=0.001)
    parser.add_argument("--steps", type=int, default=5 * 10**7)
    parser.add_argument(
        "--max-frames",
        type=int,
        default=30 * 60 * 60,  # 30 minutes with 60 fps
        help="Maximum number of frames for each episode.",
    )
    parser.add_argument("--replay-start-size", type=int, default=5 * 10**4)
    parser.add_argument("--target-update-interval", type=int, default=10**4)
    parser.add_argument("--eval-interval", type=int, default=250000)
    parser.add_argument("--eval-n-steps", type=int, default=125000)
    parser.add_argument("--update-interval", type=int, default=4)
    parser.add_argument("--batch-size", type=int, default=32)
    parser.add_argument(
        "--log-level",
        type=int,
        default=20,
        help="Logging level. 10:DEBUG, 20:INFO etc.",
    )
    parser.add_argument(
        "--render",
        action="store_true",
        default=False,
        help="Render env states in a GUI window.",
    )
    parser.add_argument(
        "--monitor",
        action="store_true",
        default=False,
        help=
        ("Monitor env. Videos and additional information are saved as output files."
         ),
    )
    parser.add_argument("--batch-accumulator",
                        type=str,
                        default="mean",
                        choices=["mean", "sum"])
    parser.add_argument("--quantile-thresholds-N", type=int, default=64)
    parser.add_argument("--quantile-thresholds-N-prime", type=int, default=64)
    parser.add_argument("--quantile-thresholds-K", type=int, default=32)
    parser.add_argument("--n-best-episodes", type=int, default=200)
    args = parser.parse_args()

    import logging

    logging.basicConfig(level=args.log_level)

    # Set a random seed used in PFRL.
    utils.set_random_seed(args.seed)

    # Set different random seeds for train and test envs.
    train_seed = args.seed
    test_seed = 2**31 - 1 - args.seed

    args.outdir = experiments.prepare_output_dir(args, args.outdir)
    print("Output files are saved in {}".format(args.outdir))

    def make_env(test):
        # Use different random seeds for train and test envs
        env_seed = test_seed if test else train_seed
        env = atari_wrappers.wrap_deepmind(
            atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
            episode_life=not test,
            clip_rewards=not test,
        )
        env.seed(int(env_seed))
        if test:
            # Randomize actions like epsilon-greedy in evaluation as well
            env = pfrl.wrappers.RandomizeAction(env, args.eval_epsilon)
        if args.monitor:
            env = pfrl.wrappers.Monitor(
                env, args.outdir, mode="evaluation" if test else "training")
        if args.render:
            env = pfrl.wrappers.Render(env)
        return env

    env = make_env(test=False)
    eval_env = make_env(test=True)
    n_actions = env.action_space.n

    q_func = pfrl.agents.iqn.ImplicitQuantileQFunction(
        psi=nn.Sequential(
            nn.Conv2d(4, 32, 8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, 4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, stride=1),
            nn.ReLU(),
            nn.Flatten(),
        ),
        phi=nn.Sequential(
            pfrl.agents.iqn.CosineBasisLinear(64, 3136),
            nn.ReLU(),
        ),
        f=nn.Sequential(
            nn.Linear(3136, 512),
            nn.ReLU(),
            nn.Linear(512, n_actions),
        ),
    )

    # Use the same hyper parameters as https://arxiv.org/abs/1710.10044
    opt = torch.optim.Adam(q_func.parameters(),
                           lr=5e-5,
                           eps=1e-2 / args.batch_size)

    rbuf = replay_buffers.ReplayBuffer(10**6)

    explorer = explorers.LinearDecayEpsilonGreedy(
        1.0,
        args.final_epsilon,
        args.final_exploration_frames,
        lambda: np.random.randint(n_actions),
    )

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    agent = pfrl.agents.IQN(
        q_func,
        opt,
        rbuf,
        gpu=args.gpu,
        gamma=0.99,
        explorer=explorer,
        replay_start_size=args.replay_start_size,
        target_update_interval=args.target_update_interval,
        update_interval=args.update_interval,
        batch_accumulator=args.batch_accumulator,
        phi=phi,
        quantile_thresholds_N=args.quantile_thresholds_N,
        quantile_thresholds_N_prime=args.quantile_thresholds_N_prime,
        quantile_thresholds_K=args.quantile_thresholds_K,
    )

    if args.load or args.load_pretrained:
        # either load or load_pretrained must be false
        assert not args.load or not args.load_pretrained
        if args.load:
            agent.load(args.load)
        else:
            agent.load(
                utils.download_model("IQN",
                                     args.env,
                                     model_type=args.pretrained_type)[0])

    if args.demo:
        eval_stats = experiments.eval_performance(
            env=eval_env,
            agent=agent,
            n_steps=args.eval_n_steps,
            n_episodes=None,
        )
        print("n_steps: {} mean: {} median: {} stdev {}".format(
            args.eval_n_steps,
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))
    else:
        experiments.train_agent_with_evaluation(
            agent=agent,
            env=env,
            steps=args.steps,
            eval_n_steps=args.eval_n_steps,
            eval_n_episodes=None,
            eval_interval=args.eval_interval,
            outdir=args.outdir,
            save_best_so_far_agent=True,
            eval_env=eval_env,
        )

        dir_of_best_network = os.path.join(args.outdir, "best")
        agent.load(dir_of_best_network)

        # run 200 evaluation episodes, each capped at 30 mins of play
        stats = experiments.evaluator.eval_performance(
            env=eval_env,
            agent=agent,
            n_steps=None,
            n_episodes=args.n_best_episodes,
            max_episode_len=args.max_frames / 4,
            logger=None,
        )
        with open(os.path.join(args.outdir, "bestscores.json"), "w") as f:
            json.dump(stats, f)
        print("The results of the best scoring network:")
        for stat in stats:
            print(str(stat) + ":" + str(stats[stat]))
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 31)")
    parser.add_argument("--gpu", type=int, default=0)
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load-pretrained",
                        action="store_true",
                        default=False)
    parser.add_argument("--pretrained-type",
                        type=str,
                        default="best",
                        choices=["best", "final"])
    parser.add_argument("--load", type=str, default=None)
    parser.add_argument("--eval-epsilon", type=float, default=0.0)
    parser.add_argument("--noisy-net-sigma", type=float, default=0.2)
    parser.add_argument("--steps", type=int, default=5 * 10**7)
    parser.add_argument(
        "--max-frames",
        type=int,
        default=30 * 60 * 60,  # 30 minutes with 60 fps
        help="Maximum number of frames for each episode.",
    )
    parser.add_argument("--replay-start-size", type=int, default=2 * 10**3)
    parser.add_argument("--eval-n-steps", type=int, default=125000)
    parser.add_argument("--eval-interval", type=int, default=250000)
    parser.add_argument(
        "--log-level",
        type=int,
        default=20,
        help="Logging level. 10:DEBUG, 20:INFO etc.",
    )
    parser.add_argument(
        "--render",
        action="store_true",
        default=False,
        help="Render env states in a GUI window.",
    )
    parser.add_argument(
        "--monitor",
        action="store_true",
        default=False,
        help=
        ("Monitor env. Videos and additional information are saved as output files."
         ),
    )
    parser.add_argument("--n-best-episodes", type=int, default=200)
    args = parser.parse_args()

    import logging

    logging.basicConfig(level=args.log_level)

    # Set a random seed used in PFRL.
    utils.set_random_seed(args.seed)

    # Set different random seeds for train and test envs.
    train_seed = args.seed
    test_seed = 2**31 - 1 - args.seed

    test_ID = datetime.datetime.now().strftime("%Y-%m-%d_%H_%M_%S")
    args.outdir = experiments.prepare_output_dir(args, args.outdir, test_ID)
    print("Output files are saved in {}".format(args.outdir))

    env = MapRootEnv()
    eval_env = MapRootEnv()

    n_actions = env.action_space.n
    input_shape = env.input_shape

    n_atoms = 51
    v_max = 10
    v_min = -10
    q_func = MyDistributionalDuelingDQN(n_actions, n_atoms, v_min, v_max,
                                        input_shape[2])

    # Noisy nets
    pnn.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma)
    # Turn off explorer
    explorer = explorers.Greedy()

    # Use the same hyper parameters as https://arxiv.org/abs/1710.02298
    opt = torch.optim.Adam(q_func.parameters(), 6.25e-5, eps=1.5 * 10**-4)

    # Prioritized Replay
    # Anneal beta from beta0 to 1 throughout training
    update_interval = 4
    betasteps = args.steps / update_interval
    rbuf = replay_buffers.PrioritizedReplayBuffer(
        5 * 10**4,
        alpha=0.5,
        beta0=0.4,
        betasteps=betasteps,
        num_steps=3,
        normalize_by_max="batch",
    )

    Agent = agents.CategoricalDoubleDQN
    agent = Agent(q_func,
                  opt,
                  rbuf,
                  gpu=args.gpu,
                  gamma=0.80,
                  explorer=explorer,
                  minibatch_size=32,
                  replay_start_size=args.replay_start_size,
                  target_update_interval=32000,
                  update_interval=update_interval,
                  batch_accumulator="mean")

    if args.demo:
        eval_stats = experiments.eval_performance(env=eval_env,
                                                  agent=agent,
                                                  n_steps=args.eval_n_steps,
                                                  n_episodes=None)
        print("n_episodes: {} mean: {} median: {} stdev {}".format(
            eval_stats["episodes"],
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))

    else:
        experiments.train_agent_with_evaluation(
            agent=agent,
            env=env,
            steps=args.steps,
            eval_n_steps=args.eval_n_steps,
            eval_n_episodes=None,
            eval_interval=args.eval_interval,
            outdir=args.outdir,
            save_best_so_far_agent=True,
            eval_env=eval_env,
            logger=TBLogger(args.outdir))

        # dir_of_best_network = os.path.join(args.outdir, "best")
        # agent.load(dir_of_best_network)

        # run 200 evaluation episodes, each capped at 30 mins of play
        stats = experiments.evaluator.eval_performance(
            env=eval_env,
            agent=agent,
            n_steps=None,
            n_episodes=args.n_best_episodes,
            max_episode_len=args.max_frames / 4,
            logger=None)
        with open(os.path.join(args.outdir, "bestscores.json"), "w") as f:
            json.dump(stats, f)
        print("The results of the best scoring network:")
        for stat in stats:
            print(str(stat) + ":" + str(stats[stat]))
Exemplo n.º 14
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--env", type=str, default="BreakoutNoFrameskip-v4")
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 31)")
    parser.add_argument("--gpu", type=int, default=0)
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load-pretrained",
                        action="store_true",
                        default=False)
    parser.add_argument("--pretrained-type",
                        type=str,
                        default="best",
                        choices=["best", "final"])
    parser.add_argument("--load", type=str, default=None)
    parser.add_argument("--eval-epsilon", type=float, default=0.0)
    parser.add_argument("--noisy-net-sigma", type=float, default=0.5)
    parser.add_argument("--steps", type=int, default=5 * 10**7)
    parser.add_argument(
        "--max-frames",
        type=int,
        default=30 * 60 * 60,  # 30 minutes with 60 fps
        help="Maximum number of frames for each episode.",
    )
    parser.add_argument("--replay-start-size", type=int, default=2 * 10**4)
    parser.add_argument("--eval-n-steps", type=int, default=125000)
    parser.add_argument("--eval-interval", type=int, default=250000)
    parser.add_argument(
        "--log-level",
        type=int,
        default=20,
        help="Logging level. 10:DEBUG, 20:INFO etc.",
    )
    parser.add_argument(
        "--render",
        action="store_true",
        default=False,
        help="Render env states in a GUI window.",
    )
    parser.add_argument(
        "--monitor",
        action="store_true",
        default=False,
        help=
        ("Monitor env. Videos and additional information are saved as output files."
         ),
    )
    parser.add_argument("--n-best-episodes", type=int, default=200)
    args = parser.parse_args()

    import logging

    logging.basicConfig(level=args.log_level)

    # Set a random seed used in PFRL.
    utils.set_random_seed(args.seed)

    # Set different random seeds for train and test envs.
    train_seed = args.seed
    test_seed = 2**31 - 1 - args.seed

    args.outdir = experiments.prepare_output_dir(args, args.outdir)
    print("Output files are saved in {}".format(args.outdir))

    def make_env(test):
        # Use different random seeds for train and test envs
        env_seed = test_seed if test else train_seed
        env = atari_wrappers.wrap_deepmind(
            atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
            episode_life=not test,
            clip_rewards=not test,
        )
        env.seed(int(env_seed))
        if test:
            # Randomize actions like epsilon-greedy in evaluation as well
            env = pfrl.wrappers.RandomizeAction(env, args.eval_epsilon)
        if args.monitor:
            env = pfrl.wrappers.Monitor(
                env, args.outdir, mode="evaluation" if test else "training")
        if args.render:
            env = pfrl.wrappers.Render(env)
        return env

    env = make_env(test=False)
    eval_env = make_env(test=True)

    n_actions = env.action_space.n

    n_atoms = 51
    v_max = 10
    v_min = -10
    q_func = DistributionalDuelingDQN(
        n_actions,
        n_atoms,
        v_min,
        v_max,
    )

    # Noisy nets
    pnn.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma)
    # Turn off explorer
    explorer = explorers.Greedy()

    # Use the same hyper parameters as https://arxiv.org/abs/1710.02298
    opt = torch.optim.Adam(q_func.parameters(), 6.25e-5, eps=1.5 * 10**-4)

    # Prioritized Replay
    # Anneal beta from beta0 to 1 throughout training
    update_interval = 4
    betasteps = args.steps / update_interval
    rbuf = replay_buffers.PrioritizedReplayBuffer(
        10**6,
        alpha=0.5,
        beta0=0.4,
        betasteps=betasteps,
        num_steps=3,
        normalize_by_max="memory",
    )

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    Agent = agents.CategoricalDoubleDQN
    agent = Agent(
        q_func,
        opt,
        rbuf,
        gpu=args.gpu,
        gamma=0.99,
        explorer=explorer,
        minibatch_size=32,
        replay_start_size=args.replay_start_size,
        target_update_interval=32000,
        update_interval=update_interval,
        batch_accumulator="mean",
        phi=phi,
    )

    if args.load or args.load_pretrained:
        # either load_ or load_pretrained must be false
        assert not args.load or not args.load_pretrained
        if args.load:
            agent.load(args.load)
        else:
            agent.load(
                utils.download_model("Rainbow",
                                     args.env,
                                     model_type=args.pretrained_type)[0])

    if args.demo:
        eval_stats = experiments.eval_performance(env=eval_env,
                                                  agent=agent,
                                                  n_steps=args.eval_n_steps,
                                                  n_episodes=None)
        print("n_episodes: {} mean: {} median: {} stdev {}".format(
            eval_stats["episodes"],
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))

    else:
        experiments.train_agent_with_evaluation(
            agent=agent,
            env=env,
            steps=args.steps,
            eval_n_steps=args.eval_n_steps,
            eval_n_episodes=None,
            eval_interval=args.eval_interval,
            outdir=args.outdir,
            save_best_so_far_agent=True,
            eval_env=eval_env,
        )

        dir_of_best_network = os.path.join(args.outdir, "best")
        agent.load(dir_of_best_network)

        # run 200 evaluation episodes, each capped at 30 mins of play
        stats = experiments.evaluator.eval_performance(
            env=eval_env,
            agent=agent,
            n_steps=None,
            n_episodes=args.n_best_episodes,
            max_episode_len=args.max_frames / 4,
            logger=None,
        )
        with open(os.path.join(args.outdir, "bestscores.json"), "w") as f:
            json.dump(stats, f)
        print("The results of the best scoring network:")
        for stat in stats:
            print(str(stat) + ":" + str(stats[stat]))
Exemplo n.º 15
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--env",
        type=str,
        default="BreakoutNoFrameskip-v4",
        help="OpenAI Atari domain to perform algorithm on.",
    )
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 31)")
    parser.add_argument("--gpu",
                        type=int,
                        default=0,
                        help="GPU to use, set to -1 if no GPU.")
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load", type=str, default=None)
    parser.add_argument(
        "--final-exploration-frames",
        type=int,
        default=10**6,
        help="Timesteps after which we stop " + "annealing exploration rate",
    )
    parser.add_argument(
        "--final-epsilon",
        type=float,
        default=0.01,
        help="Final value of epsilon during training.",
    )
    parser.add_argument(
        "--eval-epsilon",
        type=float,
        default=0.001,
        help="Exploration epsilon used during eval episodes.",
    )
    parser.add_argument("--noisy-net-sigma", type=float, default=None)
    parser.add_argument(
        "--arch",
        type=str,
        default="doubledqn",
        choices=["nature", "nips", "dueling", "doubledqn"],
        help="Network architecture to use.",
    )
    parser.add_argument(
        "--steps",
        type=int,
        default=5 * 10**7,
        help="Total number of timesteps to train the agent.",
    )
    parser.add_argument(
        "--max-frames",
        type=int,
        default=30 * 60 * 60,  # 30 minutes with 60 fps
        help="Maximum number of frames for each episode.",
    )
    parser.add_argument(
        "--replay-start-size",
        type=int,
        default=5 * 10**4,
        help="Minimum replay buffer size before " +
        "performing gradient updates.",
    )
    parser.add_argument(
        "--target-update-interval",
        type=int,
        default=3 * 10**4,
        help="Frequency (in timesteps) at which " +
        "the target network is updated.",
    )
    parser.add_argument(
        "--eval-interval",
        type=int,
        default=10**5,
        help="Frequency (in timesteps) of evaluation phase.",
    )
    parser.add_argument(
        "--update-interval",
        type=int,
        default=4,
        help="Frequency (in timesteps) of network updates.",
    )
    parser.add_argument("--eval-n-runs", type=int, default=10)
    parser.add_argument("--no-clip-delta",
                        dest="clip_delta",
                        action="store_false")
    parser.add_argument("--num-step-return", type=int, default=1)
    parser.set_defaults(clip_delta=True)
    parser.add_argument("--agent",
                        type=str,
                        default="DoubleDQN",
                        choices=["DQN", "DoubleDQN", "PAL"])
    parser.add_argument(
        "--log-level",
        type=int,
        default=20,
        help="Logging level. 10:DEBUG, 20:INFO etc.",
    )
    parser.add_argument(
        "--render",
        action="store_true",
        default=False,
        help="Render env states in a GUI window.",
    )
    parser.add_argument(
        "--monitor",
        action="store_true",
        default=False,
        help=
        ("Monitor env. Videos and additional information are saved as output files."
         ),
    )
    parser.add_argument("--lr",
                        type=float,
                        default=2.5e-4,
                        help="Learning rate.")
    parser.add_argument(
        "--prioritized",
        action="store_true",
        default=False,
        help="Use prioritized experience replay.",
    )
    parser.add_argument(
        "--checkpoint-frequency",
        type=int,
        default=None,
        help="Frequency at which agents are stored.",
    )
    args = parser.parse_args()

    import logging

    logging.basicConfig(level=args.log_level)

    # Set a random seed used in PFRL.
    utils.set_random_seed(args.seed)

    # Set different random seeds for train and test envs.
    train_seed = args.seed
    test_seed = 2**31 - 1 - args.seed

    args.outdir = experiments.prepare_output_dir(args, args.outdir)
    print("Output files are saved in {}".format(args.outdir))

    def make_env(test):
        # Use different random seeds for train and test envs
        env_seed = test_seed if test else train_seed
        env = atari_wrappers.wrap_deepmind(
            atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
            episode_life=not test,
            clip_rewards=not test,
        )
        env.seed(int(env_seed))
        if test:
            # Randomize actions like epsilon-greedy in evaluation as well
            env = pfrl.wrappers.RandomizeAction(env, args.eval_epsilon)
        if args.monitor:
            env = pfrl.wrappers.Monitor(
                env, args.outdir, mode="evaluation" if test else "training")
        if args.render:
            env = pfrl.wrappers.Render(env)
        return env

    env = make_env(test=False)
    eval_env = make_env(test=True)

    n_actions = env.action_space.n
    q_func = parse_arch(args.arch, n_actions)

    if args.noisy_net_sigma is not None:
        pnn.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma)
        # Turn off explorer
        explorer = explorers.Greedy()
    else:
        explorer = explorers.LinearDecayEpsilonGreedy(
            1.0,
            args.final_epsilon,
            args.final_exploration_frames,
            lambda: np.random.randint(n_actions),
        )

    # Use the Nature paper's hyperparameters
    opt = pfrl.optimizers.RMSpropEpsInsideSqrt(
        q_func.parameters(),
        lr=args.lr,
        alpha=0.95,
        momentum=0.0,
        eps=1e-2,
        centered=True,
    )

    # Select a replay buffer to use
    if args.prioritized:
        # Anneal beta from beta0 to 1 throughout training
        betasteps = args.steps / args.update_interval
        rbuf = replay_buffers.PrioritizedReplayBuffer(
            10**6,
            alpha=0.6,
            beta0=0.4,
            betasteps=betasteps,
            num_steps=args.num_step_return,
        )
    else:
        rbuf = replay_buffers.ReplayBuffer(10**6, args.num_step_return)

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    Agent = parse_agent(args.agent)
    agent = Agent(
        q_func,
        opt,
        rbuf,
        gpu=args.gpu,
        gamma=0.99,
        explorer=explorer,
        replay_start_size=args.replay_start_size,
        target_update_interval=args.target_update_interval,
        clip_delta=args.clip_delta,
        update_interval=args.update_interval,
        batch_accumulator="sum",
        phi=phi,
    )

    if args.load:
        agent.load(args.load)

    if args.demo:
        eval_stats = experiments.eval_performance(env=eval_env,
                                                  agent=agent,
                                                  n_steps=None,
                                                  n_episodes=args.eval_n_runs)
        print("n_runs: {} mean: {} median: {} stdev {}".format(
            args.eval_n_runs,
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))
    else:
        experiments.train_agent_with_evaluation(
            agent=agent,
            env=env,
            steps=args.steps,
            eval_n_steps=None,
            checkpoint_freq=args.checkpoint_frequency,
            eval_n_episodes=args.eval_n_runs,
            eval_interval=args.eval_interval,
            outdir=args.outdir,
            save_best_so_far_agent=False,
            eval_env=eval_env,
        )
Exemplo n.º 16
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--env", type=str, default="SlimeVolley-v0")
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=(
            "Directory path to save output files."
            " If it does not exist, it will be created."
        ),
    )
    parser.add_argument("--seed", type=int, default=0, help="Random seed [0, 2 ** 32)")
    parser.add_argument("--gpu", type=int, default=0)
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load", type=str, default=None)
    parser.add_argument("--noisy-net-sigma", type=float, default=0.1)
    parser.add_argument("--steps", type=int, default=2 * 10 ** 6)
    parser.add_argument("--replay-start-size", type=int, default=1600)
    parser.add_argument("--eval-n-episodes", type=int, default=1000)
    parser.add_argument("--eval-interval", type=int, default=250000)
    parser.add_argument(
        "--log-level",
        type=int,
        default=20,
        help="Logging level. 10:DEBUG, 20:INFO etc.",
    )
    parser.add_argument(
        "--render",
        action="store_true",
        default=False,
        help="Render env states in a GUI window.",
    )
    parser.add_argument(
        "--monitor",
        action="store_true",
        default=False,
        help=(
            "Monitor env. Videos and additional information are saved as output files."
        ),
    )
    parser.add_argument("--gamma", type=float, default=0.98)
    parser.add_argument("--v-max", type=float, default=1)
    parser.add_argument("--n-step-return", type=int, default=3)
    args = parser.parse_args()

    import logging

    logging.basicConfig(level=args.log_level)

    # Set a random seed used in PFRL.
    utils.set_random_seed(args.seed)

    # Set different random seeds for train and test envs.
    train_seed = args.seed
    test_seed = 2 ** 31 - 1 - args.seed

    args.outdir = experiments.prepare_output_dir(args, args.outdir)
    print("Output files are saved in {}".format(args.outdir))

    def make_env(test):
        if "SlimeVolley" in args.env:
            # You need to install slimevolleygym
            import slimevolleygym  # NOQA

        env = gym.make(args.env)
        # Use different random seeds for train and test envs
        env_seed = test_seed if test else train_seed
        env.seed(int(env_seed))
        if args.monitor:
            env = pfrl.wrappers.Monitor(
                env, args.outdir, mode="evaluation" if test else "training"
            )
        if args.render:
            env = pfrl.wrappers.Render(env)
        if isinstance(env.action_space, gym.spaces.MultiBinary):
            env = MultiBinaryAsDiscreteAction(env)
        return env

    env = make_env(test=False)
    eval_env = make_env(test=True)

    obs_size = env.observation_space.low.size
    n_actions = env.action_space.n

    n_atoms = 51
    v_max = args.v_max
    v_min = -args.v_max
    hidden_size = 512
    q_func = nn.Sequential(
        nn.Linear(obs_size, hidden_size),
        nn.ReLU(),
        nn.Linear(hidden_size, hidden_size),
        nn.ReLU(),
        DistributionalDuelingHead(hidden_size, n_actions, n_atoms, v_min, v_max),
    )

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32)

    # Noisy nets
    pnn.to_factorized_noisy(q_func, sigma_scale=args.noisy_net_sigma)
    # Turn off explorer
    explorer = explorers.Greedy()

    # Use the same eps as https://arxiv.org/abs/1710.02298
    opt = torch.optim.Adam(q_func.parameters(), 1e-4, eps=1.5e-4)

    # Prioritized Replay
    # Anneal beta from beta0 to 1 throughout training
    update_interval = 1
    betasteps = args.steps / update_interval
    rbuf = replay_buffers.PrioritizedReplayBuffer(
        10 ** 6,
        alpha=0.5,
        beta0=0.4,
        betasteps=betasteps,
        num_steps=args.n_step_return,
        normalize_by_max="memory",
    )

    agent = agents.CategoricalDoubleDQN(
        q_func,
        opt,
        rbuf,
        gpu=args.gpu,
        gamma=args.gamma,
        explorer=explorer,
        minibatch_size=32,
        replay_start_size=args.replay_start_size,
        target_update_interval=2000,
        update_interval=update_interval,
        batch_accumulator="mean",
        phi=phi,
        max_grad_norm=10,
    )

    if args.load:
        agent.load(args.load)

    if args.demo:
        eval_stats = experiments.eval_performance(
            env=eval_env, agent=agent, n_steps=None, n_episodes=args.eval_n_episodes,
        )
        print(
            "n_episodes: {} mean: {} median: {} stdev {}".format(
                eval_stats["episodes"],
                eval_stats["mean"],
                eval_stats["median"],
                eval_stats["stdev"],
            )
        )

    else:
        experiments.train_agent_with_evaluation(
            agent=agent,
            env=env,
            steps=args.steps,
            eval_n_steps=None,
            eval_n_episodes=args.eval_n_episodes,
            eval_interval=args.eval_interval,
            outdir=args.outdir,
            save_best_so_far_agent=True,
            eval_env=eval_env,
        )
Exemplo n.º 17
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--env",
        type=str,
        default="BreakoutNoFrameskip-v4",
        help="OpenAI Atari domain to perform algorithm on.",
    )
    parser.add_argument(
        "--outdir",
        type=str,
        default="results",
        help=("Directory path to save output files."
              " If it does not exist, it will be created."),
    )
    parser.add_argument("--seed",
                        type=int,
                        default=0,
                        help="Random seed [0, 2 ** 31)")
    parser.add_argument("--gpu",
                        type=int,
                        default=0,
                        help="GPU to use, set to -1 if no GPU.")
    parser.add_argument("--demo", action="store_true", default=False)
    parser.add_argument("--load", type=str, default=None)
    parser.add_argument(
        "--final-exploration-frames",
        type=int,
        default=10**6,
        help="Timesteps after which we stop " + "annealing exploration rate",
    )
    parser.add_argument(
        "--final-epsilon",
        type=float,
        default=0.01,
        help="Final value of epsilon during training.",
    )
    parser.add_argument(
        "--eval-epsilon",
        type=float,
        default=0.001,
        help="Exploration epsilon used during eval episodes.",
    )
    parser.add_argument(
        "--steps",
        type=int,
        default=5 * 10**7,
        help="Total number of timesteps to train the agent.",
    )
    parser.add_argument(
        "--max-frames",
        type=int,
        default=30 * 60 * 60,  # 30 minutes with 60 fps
        help="Maximum number of frames for each episode.",
    )
    parser.add_argument(
        "--replay-start-size",
        type=int,
        default=5 * 10**4,
        help="Minimum replay buffer size before " +
        "performing gradient updates.",
    )
    parser.add_argument(
        "--target-update-interval",
        type=int,
        default=3 * 10**4,
        help="Frequency (in timesteps) at which " +
        "the target network is updated.",
    )
    parser.add_argument("--demo-n-episodes", type=int, default=30)
    parser.add_argument("--eval-n-steps", type=int, default=125000)
    parser.add_argument(
        "--eval-interval",
        type=int,
        default=250000,
        help="Frequency (in timesteps) of evaluation phase.",
    )
    parser.add_argument(
        "--update-interval",
        type=int,
        default=4,
        help="Frequency (in timesteps) of network updates.",
    )
    parser.add_argument(
        "--log-level",
        type=int,
        default=20,
        help="Logging level. 10:DEBUG, 20:INFO etc.",
    )
    parser.add_argument(
        "--render",
        action="store_true",
        default=False,
        help="Render env states in a GUI window.",
    )
    parser.add_argument(
        "--monitor",
        action="store_true",
        default=False,
        help=
        ("Monitor env. Videos and additional information are saved as output files."
         ),
    )
    parser.add_argument("--lr",
                        type=float,
                        default=2.5e-4,
                        help="Learning rate.")
    parser.add_argument(
        "--recurrent",
        action="store_true",
        default=False,
        help="Use a recurrent model. See the code for the model definition.",
    )
    parser.add_argument(
        "--flicker",
        action="store_true",
        default=False,
        help=("Use so-called flickering Atari, where each"
              " screen is blacked out with probability 0.5."),
    )
    parser.add_argument(
        "--no-frame-stack",
        action="store_true",
        default=False,
        help=
        ("Disable frame stacking so that the agent can only see the current screen."
         ),
    )
    parser.add_argument(
        "--episodic-update-len",
        type=int,
        default=10,
        help="Maximum length of sequences for updating recurrent models",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=32,
        help=("Number of transitions (in a non-recurrent case)"
              " or sequences (in a recurrent case) used for an"
              " update."),
    )
    args = parser.parse_args()

    import logging

    logging.basicConfig(level=args.log_level)

    # Set a random seed used in PFRL.
    utils.set_random_seed(args.seed)

    # Set different random seeds for train and test envs.
    train_seed = args.seed
    test_seed = 2**31 - 1 - args.seed

    args.outdir = experiments.prepare_output_dir(args, args.outdir)
    print("Output files are saved in {}".format(args.outdir))

    def make_env(test):
        # Use different random seeds for train and test envs
        env_seed = test_seed if test else train_seed
        env = atari_wrappers.wrap_deepmind(
            atari_wrappers.make_atari(args.env, max_frames=args.max_frames),
            episode_life=not test,
            clip_rewards=not test,
            flicker=args.flicker,
            frame_stack=not args.no_frame_stack,
        )
        env.seed(int(env_seed))
        if test:
            # Randomize actions like epsilon-greedy in evaluation as well
            env = pfrl.wrappers.RandomizeAction(env, args.eval_epsilon)
        if args.monitor:
            env = gym.wrappers.Monitor(
                env, args.outdir, mode="evaluation" if test else "training")
        if args.render:
            env = pfrl.wrappers.Render(env)
        return env

    env = make_env(test=False)
    eval_env = make_env(test=True)
    print("Observation space", env.observation_space)
    print("Action space", env.action_space)

    n_frames = env.observation_space.shape[0]
    n_actions = env.action_space.n
    if args.recurrent:
        # Q-network with LSTM
        q_func = pfrl.nn.RecurrentSequential(
            nn.Conv2d(n_frames, 32, 8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, 4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, stride=1),
            nn.Flatten(),
            nn.ReLU(),
            nn.LSTM(input_size=3136, hidden_size=512),
            nn.Linear(512, n_actions),
            DiscreteActionValueHead(),
        )
        # Replay buffer that stores whole episodes
        rbuf = replay_buffers.EpisodicReplayBuffer(10**6)
    else:
        # Q-network without LSTM
        q_func = nn.Sequential(
            nn.Conv2d(n_frames, 32, 8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, 4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, stride=1),
            nn.Flatten(),
            nn.Linear(3136, 512),
            nn.ReLU(),
            nn.Linear(512, n_actions),
            DiscreteActionValueHead(),
        )
        # Replay buffer that stores transitions separately
        rbuf = replay_buffers.ReplayBuffer(10**6)

    explorer = explorers.LinearDecayEpsilonGreedy(
        1.0,
        args.final_epsilon,
        args.final_exploration_frames,
        lambda: np.random.randint(n_actions),
    )

    opt = torch.optim.Adam(q_func.parameters(), lr=1e-4, eps=1e-4)

    def phi(x):
        # Feature extractor
        return np.asarray(x, dtype=np.float32) / 255

    agent = pfrl.agents.DoubleDQN(
        q_func,
        opt,
        rbuf,
        gpu=args.gpu,
        gamma=0.99,
        explorer=explorer,
        replay_start_size=args.replay_start_size,
        target_update_interval=args.target_update_interval,
        update_interval=args.update_interval,
        batch_accumulator="mean",
        phi=phi,
        minibatch_size=args.batch_size,
        episodic_update_len=args.episodic_update_len,
        recurrent=args.recurrent,
    )

    if args.load:
        agent.load(args.load)

    if args.demo:
        eval_stats = experiments.eval_performance(
            env=eval_env,
            agent=agent,
            n_steps=None,
            n_episodes=args.demo_n_episodes,
        )
        print("n_runs: {} mean: {} median: {} stdev {}".format(
            args.demo_n_episodes,
            eval_stats["mean"],
            eval_stats["median"],
            eval_stats["stdev"],
        ))
    else:
        experiments.train_agent_with_evaluation(
            agent=agent,
            env=env,
            steps=args.steps,
            eval_n_steps=args.eval_n_steps,
            eval_n_episodes=None,
            eval_interval=args.eval_interval,
            outdir=args.outdir,
            eval_env=eval_env,
        )