Exemplo n.º 1
0
    def get_model(self):
        """
        Returns the model instance of the ProbModel.

        Return
        ---------------
        model: an instance of BayesianModel.

        Examples
        -------
        >>> reader = ProbModelXMLReader()
        >>> reader.get_model()
        """
        if self.probnet.get('type') == "BayesianNetwork":
            model = BayesianModel(self.probnet['edges'].keys())

            tabular_cpds = []
            cpds = self.probnet['Potentials']
            for cpd in cpds:
                var = list(cpd['Variables'].keys())[0]
                states = self.probnet['Variables'][var]['States']
                evidence = cpd['Variables'][var]
                evidence_card = [
                    len(self.probnet['Variables'][evidence_var]['States'])
                    for evidence_var in evidence
                ]
                arr = list(map(float, cpd['Values'].split()))
                values = np.array(arr)
                values = values.reshape(
                    (len(states), values.size // len(states)))
                tabular_cpds.append(
                    TabularCPD(var, len(states), values, evidence,
                               evidence_card))

            model.add_cpds(*tabular_cpds)

            variables = model.nodes()
            for var in variables:
                for prop_name, prop_value in self.probnet['Variables'][
                        var].items():
                    model.node[var][prop_name] = prop_value

            edges = model.edges()
            for edge in edges:
                for prop_name, prop_value in self.probnet['edges'][edge].items(
                ):
                    model.edge[edge[0]][edge[1]][prop_name] = prop_value
            return model
        else:
            raise ValueError("Please specify only Bayesian Network.")
Exemplo n.º 2
0
class TestBaseModelCreation(unittest.TestCase):
    def setUp(self):
        self.G = BayesianModel()

    def test_class_init_without_data(self):
        self.assertIsInstance(self.G, nx.DiGraph)

    def test_class_init_with_data_string(self):
        self.g = BayesianModel([('a', 'b'), ('b', 'c')])
        self.assertListEqual(sorted(self.g.nodes()), ['a', 'b', 'c'])
        self.assertListEqual(hf.recursive_sorted(self.g.edges()),
                             [['a', 'b'], ['b', 'c']])

    def test_class_init_with_data_nonstring(self):
        BayesianModel([(1, 2), (2, 3)])

    def test_add_node_string(self):
        self.G.add_node('a')
        self.assertListEqual(self.G.nodes(), ['a'])

    def test_add_node_nonstring(self):
        self.G.add_node(1)

    def test_add_nodes_from_string(self):
        self.G.add_nodes_from(['a', 'b', 'c', 'd'])
        self.assertListEqual(sorted(self.G.nodes()), ['a', 'b', 'c', 'd'])

    def test_add_nodes_from_non_string(self):
        self.G.add_nodes_from([1, 2, 3, 4])

    def test_add_edge_string(self):
        self.G.add_edge('d', 'e')
        self.assertListEqual(sorted(self.G.nodes()), ['d', 'e'])
        self.assertListEqual(self.G.edges(), [('d', 'e')])
        self.G.add_nodes_from(['a', 'b', 'c'])
        self.G.add_edge('a', 'b')
        self.assertListEqual(hf.recursive_sorted(self.G.edges()),
                             [['a', 'b'], ['d', 'e']])

    def test_add_edge_nonstring(self):
        self.G.add_edge(1, 2)

    def test_add_edge_selfloop(self):
        self.assertRaises(ValueError, self.G.add_edge, 'a', 'a')

    def test_add_edge_result_cycle(self):
        self.G.add_edges_from([('a', 'b'), ('a', 'c')])
        self.assertRaises(ValueError, self.G.add_edge, 'c', 'a')

    def test_add_edges_from_string(self):
        self.G.add_edges_from([('a', 'b'), ('b', 'c')])
        self.assertListEqual(sorted(self.G.nodes()), ['a', 'b', 'c'])
        self.assertListEqual(hf.recursive_sorted(self.G.edges()),
                             [['a', 'b'], ['b', 'c']])
        self.G.add_nodes_from(['d', 'e', 'f'])
        self.G.add_edges_from([('d', 'e'), ('e', 'f')])
        self.assertListEqual(sorted(self.G.nodes()),
                             ['a', 'b', 'c', 'd', 'e', 'f'])
        self.assertListEqual(
            hf.recursive_sorted(self.G.edges()),
            hf.recursive_sorted([('a', 'b'), ('b', 'c'), ('d', 'e'),
                                 ('e', 'f')]))

    def test_add_edges_from_nonstring(self):
        self.G.add_edges_from([(1, 2), (2, 3)])

    def test_add_edges_from_self_loop(self):
        self.assertRaises(ValueError, self.G.add_edges_from, [('a', 'a')])

    def test_add_edges_from_result_cycle(self):
        self.assertRaises(ValueError, self.G.add_edges_from, [('a', 'b'),
                                                              ('b', 'c'),
                                                              ('c', 'a')])

    def test_update_node_parents_bm_constructor(self):
        self.g = BayesianModel([('a', 'b'), ('b', 'c')])
        self.assertListEqual(self.g.predecessors('a'), [])
        self.assertListEqual(self.g.predecessors('b'), ['a'])
        self.assertListEqual(self.g.predecessors('c'), ['b'])

    def test_update_node_parents(self):
        self.G.add_nodes_from(['a', 'b', 'c'])
        self.G.add_edges_from([('a', 'b'), ('b', 'c')])
        self.assertListEqual(self.G.predecessors('a'), [])
        self.assertListEqual(self.G.predecessors('b'), ['a'])
        self.assertListEqual(self.G.predecessors('c'), ['b'])

    def tearDown(self):
        del self.G