Exemplo n.º 1
0
def activeTrails(model: BayesianModel,
                 variables: List[RandomVariable],
                 observed: List[RandomVariable] = None,
                 skipSelfTrail: bool = True) -> List[Trail]:
    '''Creates trails by threading the way through the dictionary returned by the pgmpy function `active_trail_nodes`'''
    varNames: List[Name] = list(map(lambda randomVar: randomVar.var,
                                    variables))
    obsNames: List[Name] = None if observed is None else list(
        map(lambda obsVar: obsVar.var, observed))

    trails: Dict[Name,
                 Set[Name]] = model.active_trail_nodes(variables=varNames,
                                                       observed=obsNames)

    trailTupleList: List[List[Tuple[Name, Name]]] = [[
        (startVar, endVar) for endVar in endVarList
    ] for (startVar, endVarList) in trails.items()]

    trailTuples: List[Tuple[Name,
                            Name]] = list(itertools.chain(*trailTupleList))

    if skipSelfTrail:  # then remove the ones with same start and end
        trailTuples = list(filter(lambda tup: tup[0] != tup[1], trailTuples))

    explicitTrails: List[Trail] = list(
        map(lambda tup: f"{tup[0]} --> {tup[1]}", trailTuples))

    return explicitTrails
Exemplo n.º 2
0
class TestBayesianModelCPD(unittest.TestCase):
    def setUp(self):
        self.G = BayesianModel([('d', 'g'), ('i', 'g'), ('g', 'l'),
                                ('i', 's')])

    def test_active_trail_nodes(self):
        self.assertEqual(sorted(self.G.active_trail_nodes('d')),
                         ['d', 'g', 'l'])
        self.assertEqual(sorted(self.G.active_trail_nodes('i')),
                         ['g', 'i', 'l', 's'])

    def test_active_trail_nodes_args(self):
        self.assertEqual(sorted(self.G.active_trail_nodes('d', observed='g')),
                         ['d', 'i', 's'])
        self.assertEqual(sorted(self.G.active_trail_nodes('l', observed='g')),
                         ['l'])
        self.assertEqual(
            sorted(self.G.active_trail_nodes('s', observed=['i', 'l'])), ['s'])
        self.assertEqual(
            sorted(self.G.active_trail_nodes('s', observed=['d', 'l'])),
            ['g', 'i', 's'])

    def test_is_active_trail_triplets(self):
        self.assertTrue(self.G.is_active_trail('d', 'l'))
        self.assertTrue(self.G.is_active_trail('g', 's'))
        self.assertFalse(self.G.is_active_trail('d', 'i'))
        self.assertTrue(self.G.is_active_trail('d', 'i', observed='g'))
        self.assertFalse(self.G.is_active_trail('d', 'l', observed='g'))
        self.assertFalse(self.G.is_active_trail('i', 'l', observed='g'))
        self.assertTrue(self.G.is_active_trail('d', 'i', observed='l'))
        self.assertFalse(self.G.is_active_trail('g', 's', observed='i'))

    def test_is_active_trail(self):
        self.assertFalse(self.G.is_active_trail('d', 's'))
        self.assertTrue(self.G.is_active_trail('s', 'l'))
        self.assertTrue(self.G.is_active_trail('d', 's', observed='g'))
        self.assertFalse(self.G.is_active_trail('s', 'l', observed='g'))

    def test_is_active_trail_args(self):
        self.assertFalse(self.G.is_active_trail('s', 'l', 'i'))
        self.assertFalse(self.G.is_active_trail('s', 'l', 'g'))
        self.assertTrue(self.G.is_active_trail('d', 's', 'l'))
        self.assertFalse(self.G.is_active_trail('d', 's', ['i', 'l']))

    def test_get_cpds(self):
        cpd_d = TabularCPD('d', 2, values=np.random.rand(2, 1))
        cpd_i = TabularCPD('i', 2, values=np.random.rand(2, 1))
        cpd_g = TabularCPD('g',
                           2,
                           values=np.random.rand(2, 4),
                           evidence=['d', 'i'],
                           evidence_card=[2, 2])
        cpd_l = TabularCPD('l',
                           2,
                           values=np.random.rand(2, 2),
                           evidence=['g'],
                           evidence_card=[2])
        cpd_s = TabularCPD('s',
                           2,
                           values=np.random.rand(2, 2),
                           evidence=['i'],
                           evidence_card=[2])
        self.G.add_cpds(cpd_d, cpd_i, cpd_g, cpd_l, cpd_s)

        self.assertEqual(self.G.get_cpds('d').variable, 'd')

    def test_get_cpds1(self):
        self.model = BayesianModel([('A', 'AB')])
        cpd_a = TabularCPD('A', 2, values=np.random.rand(2, 1))
        cpd_ab = TabularCPD('AB',
                            2,
                            values=np.random.rand(2, 2),
                            evidence=['A'],
                            evidence_card=[2])

        self.model.add_cpds(cpd_a, cpd_ab)
        self.assertEqual(self.model.get_cpds('A').variable, 'A')
        self.assertEqual(self.model.get_cpds('AB').variable, 'AB')

    def test_add_single_cpd(self):
        cpd_s = TabularCPD('s', 2, np.random.rand(2, 2), ['i'], 2)
        self.G.add_cpds(cpd_s)
        self.assertListEqual(self.G.get_cpds(), [cpd_s])

    def test_add_multiple_cpds(self):
        cpd_d = TabularCPD('d', 2, values=np.random.rand(2, 1))
        cpd_i = TabularCPD('i', 2, values=np.random.rand(2, 1))
        cpd_g = TabularCPD('g',
                           2,
                           values=np.random.rand(2, 4),
                           evidence=['d', 'i'],
                           evidence_card=[2, 2])
        cpd_l = TabularCPD('l',
                           2,
                           values=np.random.rand(2, 2),
                           evidence=['g'],
                           evidence_card=[2])
        cpd_s = TabularCPD('s',
                           2,
                           values=np.random.rand(2, 2),
                           evidence=['i'],
                           evidence_card=[2])

        self.G.add_cpds(cpd_d, cpd_i, cpd_g, cpd_l, cpd_s)
        self.assertEqual(self.G.get_cpds('d'), cpd_d)
        self.assertEqual(self.G.get_cpds('i'), cpd_i)
        self.assertEqual(self.G.get_cpds('g'), cpd_g)
        self.assertEqual(self.G.get_cpds('l'), cpd_l)
        self.assertEqual(self.G.get_cpds('s'), cpd_s)

    def test_check_model(self):
        cpd_g = TabularCPD('g',
                           2,
                           values=np.array([[0.2, 0.3, 0.4, 0.6],
                                            [0.8, 0.7, 0.6, 0.4]]),
                           evidence=['d', 'i'],
                           evidence_card=[2, 2])

        cpd_s = TabularCPD('s',
                           2,
                           values=np.array([[0.2, 0.3], [0.8, 0.7]]),
                           evidence=['i'],
                           evidence_card=[2])

        cpd_l = TabularCPD('l',
                           2,
                           values=np.array([[0.2, 0.3], [0.8, 0.7]]),
                           evidence=['g'],
                           evidence_card=[2])

        self.G.add_cpds(cpd_g, cpd_s, cpd_l)
        self.assertTrue(self.G.check_model())

    def test_check_model1(self):
        cpd_g = TabularCPD('g',
                           2,
                           values=np.array([[0.2, 0.3], [0.8, 0.7]]),
                           evidence=['i'],
                           evidence_card=[2])
        self.G.add_cpds(cpd_g)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_g)

        cpd_g = TabularCPD('g',
                           2,
                           values=np.array([[0.2, 0.3, 0.4, 0.6],
                                            [0.8, 0.7, 0.6, 0.4]]),
                           evidence=['d', 's'],
                           evidence_card=[2, 2])
        self.G.add_cpds(cpd_g)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_g)

        cpd_g = TabularCPD('g',
                           2,
                           values=np.array([[0.2, 0.3], [0.8, 0.7]]),
                           evidence=['l'],
                           evidence_card=[2])
        self.G.add_cpds(cpd_g)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_g)

        cpd_l = TabularCPD('l',
                           2,
                           values=np.array([[0.2, 0.3], [0.8, 0.7]]),
                           evidence=['d'],
                           evidence_card=[2])
        self.G.add_cpds(cpd_l)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_l)

        cpd_l = TabularCPD('l',
                           2,
                           values=np.array([[0.2, 0.3, 0.4, 0.6],
                                            [0.8, 0.7, 0.6, 0.4]]),
                           evidence=['d', 'i'],
                           evidence_card=[2, 2])
        self.G.add_cpds(cpd_l)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_l)

        cpd_l = TabularCPD('l',
                           2,
                           values=np.array(
                               [[0.2, 0.3, 0.4, 0.6, 0.2, 0.3, 0.4, 0.6],
                                [0.8, 0.7, 0.6, 0.4, 0.8, 0.7, 0.6, 0.4]]),
                           evidence=['g', 'd', 'i'],
                           evidence_card=[2, 2, 2])
        self.G.add_cpds(cpd_l)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_l)

    def test_check_model2(self):
        cpd_s = TabularCPD('s',
                           2,
                           values=np.array([[0.5, 0.3], [0.8, 0.7]]),
                           evidence=['i'],
                           evidence_card=2)
        self.G.add_cpds(cpd_s)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_s)

        cpd_g = TabularCPD('g',
                           2,
                           values=np.array([[0.2, 0.3, 0.4, 0.6],
                                            [0.3, 0.7, 0.6, 0.4]]),
                           evidence=['d', 'i'],
                           evidence_card=[2, 2])
        self.G.add_cpds(cpd_g)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_g)

        cpd_l = TabularCPD('l',
                           2,
                           values=np.array([[0.2, 0.3], [0.1, 0.7]]),
                           evidence=['g'],
                           evidence_card=[2])
        self.G.add_cpds(cpd_l)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_l)

    def tearDown(self):
        del self.G
Exemplo n.º 3
0
('INT', 'VALV'),
('PRSS', 'VTUB'),
('DISC', 'VTUB'),
('MVS', 'VMCH'),
('VMCH', 'VTUB'),('VMCH', 'VALV'),
('VTUB', 'VLNG'),('VTUB', 'VALV'),
('VLNG', 'VALV'),('VLNG', 'ACO2'),
('VALV', 'ACO2'),
('CCHL', 'HR'),
('HR', 'CO'),
('CO', 'BP')])


# mle = MaximumLikelihoodEstimator(model, df)
# print(mle.estimate_cpd('VALV'))  # unconditional
# print(mle.estimate_cpd('PVS'))  # conditional

print (model.active_trail_nodes("MINV"))
print (model.active_trail_nodes("PVS"))
print (model.active_trail_nodes("SAO2"))
print (model.active_trail_nodes("MVS"))
print (model.active_trail_nodes("VMCH"))
print (model.active_trail_nodes("PRSS"))
print (model.active_trail_nodes("DISC"))
print (model.active_trail_nodes("VTUB"))
print (model.active_trail_nodes("ECO2"))
print (model.active_trail_nodes("VLNG"))
print (model.active_trail_nodes("VALV"))
print (model.active_trail_nodes("ACO2"))
print (model.active_trail_nodes("INT"))
print (model.active_trail_nodes("SHNT"))
Exemplo n.º 4
0
class TestBayesianModelCPD(unittest.TestCase):
    def setUp(self):
        self.G = BayesianModel([('d', 'g'), ('i', 'g'), ('g', 'l'),
                                ('i', 's')])

    def test_active_trail_nodes(self):
        self.assertEqual(sorted(self.G.active_trail_nodes('d')), ['d', 'g', 'l'])
        self.assertEqual(sorted(self.G.active_trail_nodes('i')), ['g', 'i', 'l', 's'])

    def test_active_trail_nodes_args(self):
        self.assertEqual(sorted(self.G.active_trail_nodes('d', observed='g')), ['d', 'i', 's'])
        self.assertEqual(sorted(self.G.active_trail_nodes('l', observed='g')), ['l'])
        self.assertEqual(sorted(self.G.active_trail_nodes('s', observed=['i', 'l'])), ['s'])
        self.assertEqual(sorted(self.G.active_trail_nodes('s', observed=['d', 'l'])), ['g', 'i', 's'])

    def test_is_active_trail_triplets(self):
        self.assertTrue(self.G.is_active_trail('d', 'l'))
        self.assertTrue(self.G.is_active_trail('g', 's'))
        self.assertFalse(self.G.is_active_trail('d', 'i'))
        self.assertTrue(self.G.is_active_trail('d', 'i', observed='g'))
        self.assertFalse(self.G.is_active_trail('d', 'l', observed='g'))
        self.assertFalse(self.G.is_active_trail('i', 'l', observed='g'))
        self.assertTrue(self.G.is_active_trail('d', 'i', observed='l'))
        self.assertFalse(self.G.is_active_trail('g', 's', observed='i'))

    def test_is_active_trail(self):
        self.assertFalse(self.G.is_active_trail('d', 's'))
        self.assertTrue(self.G.is_active_trail('s', 'l'))
        self.assertTrue(self.G.is_active_trail('d', 's', observed='g'))
        self.assertFalse(self.G.is_active_trail('s', 'l', observed='g'))

    def test_is_active_trail_args(self):
        self.assertFalse(self.G.is_active_trail('s', 'l', 'i'))
        self.assertFalse(self.G.is_active_trail('s', 'l', 'g'))
        self.assertTrue(self.G.is_active_trail('d', 's', 'l'))
        self.assertFalse(self.G.is_active_trail('d', 's', ['i', 'l']))

    def test_get_cpds(self):
        cpd_d = TabularCPD('d', 2, np.random.rand(2, 1))
        cpd_i = TabularCPD('i', 2, np.random.rand(2, 1))
        cpd_g = TabularCPD('g', 2, np.random.rand(2, 4), ['d', 'i'], [2, 2])
        cpd_l = TabularCPD('l', 2, np.random.rand(2, 2), ['g'], 2)
        cpd_s = TabularCPD('s', 2, np.random.rand(2, 2), ['i'], 2)
        self.G.add_cpds(cpd_d, cpd_i, cpd_g, cpd_l, cpd_s)

        self.assertEqual(self.G.get_cpds('d').variable, 'd')

    def test_get_cpds1(self):
        self.model = BayesianModel([('A', 'AB')])
        cpd_a = TabularCPD('A', 2, np.random.rand(2, 1))
        cpd_ab = TabularCPD('AB', 2, np.random.rand(2, 2), evidence=['A'],
                            evidence_card=[2])

        self.model.add_cpds(cpd_a, cpd_ab)
        self.assertEqual(self.model.get_cpds('A').variable, 'A')
        self.assertEqual(self.model.get_cpds('AB').variable, 'AB')

    def test_add_single_cpd(self):
        cpd_s = TabularCPD('s', 2, np.random.rand(2, 2), ['i'], 2)
        self.G.add_cpds(cpd_s)
        self.assertListEqual(self.G.get_cpds(), [cpd_s])

    def test_add_multiple_cpds(self):
        cpd_d = TabularCPD('d', 2, np.random.rand(2, 1))
        cpd_i = TabularCPD('i', 2, np.random.rand(2, 1))
        cpd_g = TabularCPD('g', 2, np.random.rand(2, 4), ['d', 'i'], [2, 2])
        cpd_l = TabularCPD('l', 2, np.random.rand(2, 2), ['g'], 2)
        cpd_s = TabularCPD('s', 2, np.random.rand(2, 2), ['i'], 2)

        self.G.add_cpds(cpd_d, cpd_i, cpd_g, cpd_l, cpd_s)
        self.assertEqual(self.G.get_cpds('d'), cpd_d)
        self.assertEqual(self.G.get_cpds('i'), cpd_i)
        self.assertEqual(self.G.get_cpds('g'), cpd_g)
        self.assertEqual(self.G.get_cpds('l'), cpd_l)
        self.assertEqual(self.G.get_cpds('s'), cpd_s)

    def test_check_model(self):
        cpd_g = TabularCPD('g', 2, 
                            np.array([[0.2, 0.3, 0.4, 0.6],
                                      [0.8, 0.7, 0.6, 0.4]]),
                                                            ['d', 'i'], [2, 2])

        cpd_s = TabularCPD('s', 2, 
                            np.array([[0.2, 0.3],
                                      [0.8, 0.7]]),
                                                ['i'], 2)

        cpd_l = TabularCPD('l', 2, 
                            np.array([[0.2, 0.3],
                                      [0.8, 0.7]]),
                                                ['g'], 2)

        self.G.add_cpds(cpd_g, cpd_s, cpd_l)
        self.assertTrue(self.G.check_model())


    def test_check_model1(self):
        cpd_g = TabularCPD('g', 2, 
                            np.array([[0.2, 0.3],
                                      [0.8, 0.7]]),
                                                 ['i'], 2)
        self.G.add_cpds(cpd_g)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_g)

        cpd_g = TabularCPD('g', 2, 
                            np.array([[0.2, 0.3, 0.4, 0.6],
                                      [0.8, 0.7, 0.6, 0.4]]),
                                                            ['d', 's'], [2, 2])
        self.G.add_cpds(cpd_g)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_g)

        cpd_g = TabularCPD('g', 2, 
                            np.array([[0.2, 0.3],
                                      [0.8, 0.7]]),
                                                 ['l'], 2)
        self.G.add_cpds(cpd_g)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_g)

        cpd_l = TabularCPD('l', 2, 
                            np.array([[0.2, 0.3],
                                      [0.8, 0.7]]),
                                                 ['d'], 2)
        self.G.add_cpds(cpd_l)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_l)

        cpd_l = TabularCPD('l', 2, 
                            np.array([[0.2, 0.3, 0.4, 0.6],
                                      [0.8, 0.7, 0.6, 0.4]]),
                                                           ['d', 'i'], [2, 2])
        self.G.add_cpds(cpd_l)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_l)

        cpd_l = TabularCPD('l', 2, 
                            np.array([[0.2, 0.3, 0.4, 0.6, 0.2, 0.3, 0.4, 0.6],
                                      [0.8, 0.7, 0.6, 0.4, 0.8, 0.7, 0.6, 0.4]]),
                                                            ['g', 'd', 'i'], [2, 2, 2])
        self.G.add_cpds(cpd_l)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_l)

    def test_check_model2(self):
        cpd_s = TabularCPD('s', 2, 
                            np.array([[0.5, 0.3],
                                      [0.8, 0.7]]),
                                                ['i'], 2)
        self.G.add_cpds(cpd_s)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_s)


        cpd_g = TabularCPD('g', 2, 
                            np.array([[0.2, 0.3, 0.4, 0.6],
                                      [0.3, 0.7, 0.6, 0.4]]),
                                                            ['d', 'i'], [2, 2])
        self.G.add_cpds(cpd_g)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_g)

        cpd_l = TabularCPD('l', 2, 
                            np.array([[0.2, 0.3],
                                      [0.1, 0.7]]),
                                                ['g'], 2)
        self.G.add_cpds(cpd_l)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_l)


    def tearDown(self):
        del self.G
Exemplo n.º 5
0
class TestBayesianModelCPD(unittest.TestCase):
    def setUp(self):
        self.G = BayesianModel([('d', 'g'), ('i', 'g'), ('g', 'l'),
                                ('i', 's')])

    def test_active_trail_nodes(self):
        self.assertEqual(sorted(self.G.active_trail_nodes('d')), ['d', 'g', 'l'])
        self.assertEqual(sorted(self.G.active_trail_nodes('i')), ['g', 'i', 'l', 's'])

    def test_active_trail_nodes_args(self):
        self.assertEqual(sorted(self.G.active_trail_nodes('d', observed='g')), ['d', 'i', 's'])
        self.assertEqual(sorted(self.G.active_trail_nodes('l', observed='g')), ['l'])
        self.assertEqual(sorted(self.G.active_trail_nodes('s', observed=['i', 'l'])), ['s'])
        self.assertEqual(sorted(self.G.active_trail_nodes('s', observed=['d', 'l'])), ['g', 'i', 's'])

    def test_is_active_trail_triplets(self):
        self.assertTrue(self.G.is_active_trail('d', 'l'))
        self.assertTrue(self.G.is_active_trail('g', 's'))
        self.assertFalse(self.G.is_active_trail('d', 'i'))
        self.assertTrue(self.G.is_active_trail('d', 'i', observed='g'))
        self.assertFalse(self.G.is_active_trail('d', 'l', observed='g'))
        self.assertFalse(self.G.is_active_trail('i', 'l', observed='g'))
        self.assertTrue(self.G.is_active_trail('d', 'i', observed='l'))
        self.assertFalse(self.G.is_active_trail('g', 's', observed='i'))

    def test_is_active_trail(self):
        self.assertFalse(self.G.is_active_trail('d', 's'))
        self.assertTrue(self.G.is_active_trail('s', 'l'))
        self.assertTrue(self.G.is_active_trail('d', 's', observed='g'))
        self.assertFalse(self.G.is_active_trail('s', 'l', observed='g'))

    def test_is_active_trail_args(self):
        self.assertFalse(self.G.is_active_trail('s', 'l', 'i'))
        self.assertFalse(self.G.is_active_trail('s', 'l', 'g'))
        self.assertTrue(self.G.is_active_trail('d', 's', 'l'))
        self.assertFalse(self.G.is_active_trail('d', 's', ['i', 'l']))

    def test_get_cpds(self):
        cpd_d = TabularCPD('d', 2, np.random.rand(2, 1))
        cpd_i = TabularCPD('i', 2, np.random.rand(2, 1))
        cpd_g = TabularCPD('g', 2, np.random.rand(2, 4), ['d', 'i'], [2, 2])
        cpd_l = TabularCPD('l', 2, np.random.rand(2, 2), ['g'], 2)
        cpd_s = TabularCPD('s', 2, np.random.rand(2, 2), ['i'], 2)
        self.G.add_cpds(cpd_d, cpd_i, cpd_g, cpd_l, cpd_s)

        self.assertEqual(self.G.get_cpds('d').variable, 'd')

    def test_get_cpds1(self):
        self.model = BayesianModel([('A', 'AB')])
        cpd_a = TabularCPD('A', 2, np.random.rand(2, 1))
        cpd_ab = TabularCPD('AB', 2, np.random.rand(2, 2), evidence=['A'],
                            evidence_card=[2])

        self.model.add_cpds(cpd_a, cpd_ab)
        self.assertEqual(self.model.get_cpds('A').variable, 'A')
        self.assertEqual(self.model.get_cpds('AB').variable, 'AB')

    def test_add_single_cpd(self):
        from pgmpy.factors import TabularCPD
        cpd_s = TabularCPD('s', 2, np.random.rand(2, 2), ['i'], 2)
        self.G.add_cpds(cpd_s)
        self.assertListEqual(self.G.get_cpds(), [cpd_s])

    def test_add_multiple_cpds(self):
        from pgmpy.factors import TabularCPD
        cpd_d = TabularCPD('d', 2, np.random.rand(2, 1))
        cpd_i = TabularCPD('i', 2, np.random.rand(2, 1))
        cpd_g = TabularCPD('g', 2, np.random.rand(2, 4), ['d', 'i'], [2, 2])
        cpd_l = TabularCPD('l', 2, np.random.rand(2, 2), ['g'], 2)
        cpd_s = TabularCPD('s', 2, np.random.rand(2, 2), ['i'], 2)

        self.G.add_cpds(cpd_d, cpd_i, cpd_g, cpd_l, cpd_s)
        self.assertEqual(self.G.get_cpds('d'), cpd_d)
        self.assertEqual(self.G.get_cpds('i'), cpd_i)
        self.assertEqual(self.G.get_cpds('g'), cpd_g)
        self.assertEqual(self.G.get_cpds('l'), cpd_l)
        self.assertEqual(self.G.get_cpds('s'), cpd_s)

    def tearDown(self):
        del self.G
Exemplo n.º 6
0
class TestBayesianModelCPD(unittest.TestCase):
    def setUp(self):
        self.G = BayesianModel([('d', 'g'), ('i', 'g'), ('g', 'l'),
                                ('i', 's')])
        # self.G.set_states(
        #     {'d': ['easy', 'hard'], 'g': ['A', 'B', 'C'], 'i': ['dumb', 'smart'], 's': ['bad', 'avg', 'good'],
        #      'l': ['yes', 'no']})

    # def test_set_cpd(self):
    #     self.G.set_cpd('g', [[0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
    #                          [0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
    #                          [0.8, 0.8, 0.8, 0.8, 0.8, 0.8]])
    #     self.assertIsInstance(self.G.node['g']['_cpd'], bm.CPD.TabularCPD)
    #     np.testing.assert_array_equal(self.G.node['g']['_cpd'].cpd, np.array((
    #         [[0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
    #          [0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
    #          [0.8, 0.8, 0.8, 0.8, 0.8, 0.8]])))
    #
    # def test_get_cpd(self):
    #     self.G.set_cpd('g', [[0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
    #                          [0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
    #                          [0.8, 0.8, 0.8, 0.8, 0.8, 0.8]])
    #     np.testing.assert_array_equal(self.G.get_cpd('g'), np.array((
    #         [[0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
    #          [0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
    #          [0.8, 0.8, 0.8, 0.8, 0.8, 0.8]])))

    # def test_set_observations_single_state_reset_false(self):
    #     self.G.set_observations({'d': 'easy'})
    #     for state in self.G.node['d']['_states']:
    #         if state['name'] == 'easy':
    #             break
    #     self.assertTrue(state['observed_status'])
    #     self.assertTrue(self.G.node['d']['_observed'])
    #
    # def test_set_observation_multiple_state_reset_false(self):
    #     self.G.set_observations({'d': 'easy', 'g': 'A'})
    #     for state in self.G.node['d']['_states']:
    #         if state['name'] == 'easy':
    #             break
    #     self.assertTrue(state['observed_status'])
    #     self.assertTrue(self.G.node['d']['_observed'])
    #     for state in self.G.node['g']['_states']:
    #         if state['name'] == 'A':
    #             break
    #     self.assertTrue(state['observed_status'])
    #     self.assertTrue(self.G.node['g']['_observed'])
    #
    # def test_set_observation_multiple_state_reset_false_not_found(self):
    #     self.assertRaises(ValueError, self.G.set_observations, {'d': 'unknow_state'})
    #
    # def test_reset_observations_single_state(self):
    #     self.G.reset_observations({'d': 'easy'})
    #     # TODO change this as the function has changed
    #     self.G.reset_observations({'d': 'easy'})
    #     for state in self.G.node['d']['_states']:
    #         if state['name'] == 'easy':
    #             break
    #     self.assertFalse(state['observed_status'])
    #     self.assertFalse(self.G.node['g']['_observed'])
    #
    # def test_reset_observations_multiple_state(self):
    #     self.G.set_observations({'d': 'easy', 'g': 'A', 'i': 'dumb'})
    #     self.G.reset_observations({'d': 'easy', 'i': 'dumb'})
    #     for state in self.G.node['d']['_states']:
    #         if state['name'] == 'easy':
    #             break
    #     self.assertFalse(state['observed_status'])
    #     self.assertFalse(self.G.node['d']['_observed'])
    #     for state in self.G.node['g']['_states']:
    #         if state['name'] == 'A':
    #             break
    #     self.assertTrue(state['observed_status'])
    #     self.assertTrue(self.G.node['g']['_observed'])
    #
    # def test_reset_observation_node_none(self):
    #     self.G.set_observations({'d': 'easy', 'g': 'A'})
    #     self.G.reset_observations()
    #     self.assertFalse(self.G.node['d']['_observed'])
    #     for state in self.G.node['d']['_states']:
    #         self.assertFalse(state['observed_status'])
    #     self.assertFalse(self.G.node['g']['_observed'])
    #     for state in self.G.node['g']['_states']:
    #         self.assertFalse(state['observed_status'])
    #
    # def test_reset_observations_node_not_none(self):
    #     self.G.set_observations({'d': 'easy', 'g': 'A'})
    #     self.G.reset_observations('d')
    #     self.assertFalse(self.G.node['d']['_observed'])
    #     for state in self.G.node['d']['_states']:
    #         self.assertFalse(state['observed_status'])
    #     self.assertTrue(self.G.node['g']['_observed'])
    #     for state in self.G.node['g']['_states']:
    #         if state['name'] == 'A':
    #             self.assertTrue(state['observed_status'])
    #         else:
    #             self.assertFalse(state['observed_status'])
    #
    # def test_reset_observations_node_error(self):
    #     self.assertRaises(KeyError, self.G.reset_observations, 'j')
    #
    # def test_is_observed(self):
    #     self.G.set_observations({'d': 'easy'})
    #     self.assertTrue(self.G.is_observed('d'))
    #     self.assertFalse(self.G.is_observed('i'))
    #
    # # def test_get_ancestros_observation(self):
    # #     self.G.set_observations({'d': 'easy', 'g': 'A'})
    # #     self.assertListEqual(list(self.G._get_ancestors_observation(['d'])), [])
    # #     self.assertListEqual(list(sorted(self.G._get_ancestors_observation(['d', 'g']))), ['d', 'i'])
    #
    # def test_get_observed_list(self):
    #     self.G.set_observations({'d': 'hard', 'i': 'smart'})
    #     self.assertListEqual(sorted(self.G._get_observed_list()), ['d', 'i'])

    def test_active_trail_nodes(self):
        self.assertEqual(sorted(self.G.active_trail_nodes('d')), ['d', 'g', 'l'])
        self.assertEqual(sorted(self.G.active_trail_nodes('i')), ['g', 'i', 'l', 's'])

    def test_active_trail_nodes_args(self):
        self.assertEqual(sorted(self.G.active_trail_nodes('d', observed='g')), ['d', 'i', 's'])
        self.assertEqual(sorted(self.G.active_trail_nodes('l', observed='g')), ['l'])
        self.assertEqual(sorted(self.G.active_trail_nodes('s', observed=['i', 'l'])), ['s'])
        self.assertEqual(sorted(self.G.active_trail_nodes('s', observed=['d', 'l'])), ['g', 'i', 's'])

    def test_is_active_trail_triplets(self):
        self.assertTrue(self.G.is_active_trail('d', 'l'))
        self.assertTrue(self.G.is_active_trail('g', 's'))
        self.assertFalse(self.G.is_active_trail('d', 'i'))
        self.assertTrue(self.G.is_active_trail('d', 'i', observed='g'))
        self.assertFalse(self.G.is_active_trail('d', 'l', observed='g'))
        self.assertFalse(self.G.is_active_trail('i', 'l', observed='g'))
        self.assertTrue(self.G.is_active_trail('d', 'i', observed='l'))
        self.assertFalse(self.G.is_active_trail('g', 's', observed='i'))

    def test_is_active_trail(self):
        self.assertFalse(self.G.is_active_trail('d', 's'))
        self.assertTrue(self.G.is_active_trail('s', 'l'))
        self.assertTrue(self.G.is_active_trail('d', 's', observed='g'))
        self.assertFalse(self.G.is_active_trail('s', 'l', observed='g'))

    def test_is_active_trail_args(self):
        self.assertFalse(self.G.is_active_trail('s', 'l', 'i'))
        self.assertFalse(self.G.is_active_trail('s', 'l', 'g'))
        self.assertTrue(self.G.is_active_trail('d', 's', 'l'))
        self.assertFalse(self.G.is_active_trail('d', 's', ['i', 'l']))

    def tearDown(self):
        del self.G
Exemplo n.º 7
0
                      \  /     \     \
                      AGE   GENDER  BP
                       ^     /    
                       |    /
                       |   /                  
                       |  /
                       | /
                       CP
"""

model.fit(dataset, estimator=MaximumLikelihoodEstimator)

print('\n Inferencing with Bayesian Network:')

HeartDisease_infer = VariableElimination(model)
for cpd in model.get_cpds():
    print("CPD of {variable}:".format(variable=cpd.variable))
    print(cpd)
    print(model.check_model())
print('\n1.Probability of HeartDisease given Gender = Female')
q = HeartDisease_infer.query(variables=['HD'], evidence={'GENDER': 1})
print(q['HD'])

print('\n2. Probability of HeartDisease given BP = Low')
q = HeartDisease_infer.query(variables=['HD'], evidence={'BP': 1})
print(q['HD'])

print(model.get_independencies())

print(model.active_trail_nodes('HD'))
Exemplo n.º 8
0
# In[26]:

# Getting the local independencies of a variable.
model.local_independencies('G')

# In[27]:

# Getting all the local independencies in the network.
model.local_independencies(['D', 'I', 'S', 'G', 'L'])

# In[28]:

# Active trail: For any two variables A and B in a network if any change in A influences the values of B then we say
#               that there is an active trail between A and B.
# In pgmpy active_trail_nodes gives a set of nodes which are affected by any change in the node passed in the argument.
model.active_trail_nodes('D')

# In[29]:

model.active_trail_nodes('D', observed='G')

# ### 3. How is this Bayesian Network representing the Joint Distribution over the variables ?
# Till now we just have been considering that the Bayesian Network can represent the Joint Distribution without any proof. Now let's see how to compute the Joint Distribution from the Bayesian Network.
#
# From the chain rule of probabiliy we know that:
# $$ P(A, B) = P(A | B) * P(B) $$
#
# Now in this case:
# $$ P(D, I, G, L, S) = P(L| S, G, D, I) * P(S | G, D, I) * P(G | D, I) * P(D | I) * P(I) $$
#
# Applying the local independence conditions in the above equation we will get: