Exemplo n.º 1
0
Arquivo: dpack.py Projeto: BeauJoh/phd
def GetFilesInDirectory(
        directory: pathlib.Path,
        exclude_patterns: typing.List[str]) -> typing.List[pathlib.Path]:
    """Recursively list all files in a directory.

  Returns relative paths of all files in a directory which do not match the
  exclude patterns. The list of exclude patterns supports UNIX style globbing.

  Args:
    directory: The path to the directory.
    exclude_patterns: A list of patterns to exclude.

  Returns:
    A list of paths.
  """
    exclude_patterns = set(exclude_patterns + ALWAYS_EXCLUDE_PATTERNS)
    files = []
    for path in sorted(fs.lsfiles(directory, recursive=True)):
        for pattern in exclude_patterns:
            if fnmatch.fnmatch(path, pattern):
                logging.info('- %s', path)
                break
        else:
            logging.info('+ %s', path)
            files.append(pathlib.Path(path))
    return files
Exemplo n.º 2
0
def ReadClassificationsToTable(output_dir: pathlib.Path) -> pd.DataFrame:
    rows = []
    counters = {}
    for f in fs.lsfiles(output_dir, recursive=True, abspaths=True):
        path = pathlib.Path(f)
        result_class, testbed_num, opt = path.parts[-4:-1]
        t = testbed_num + opt
        if t not in counters:
            counters[t] = collections.defaultdict(int)
        counters[t][result_class] += 1
    for t, result_classes in counters.items():
        rows.append([
            t,
            result_classes['bc'],
            result_classes['bto'],
            result_classes['abf'],
            result_classes['arc'],
            result_classes['awo'],
            sum(result_classes.values()),
        ])
    rows = sorted(rows, key=lambda x: (int(x[0][:-1]), x[0][-1]))
    rows.append([
        'Total',
        len(fs.lsfiles(output_dir / 'bc', recursive=True)),
        len(fs.lsfiles(output_dir / 'bto', recursive=True)),
        len(fs.lsfiles(output_dir / 'abf', recursive=True)),
        len(fs.lsfiles(output_dir / 'arc', recursive=True)),
        len(fs.lsfiles(output_dir / 'awo', recursive=True)),
        len(fs.lsfiles(output_dir / 'pass', recursive=True)),
    ])
    df = pd.DataFrame(
        rows, columns=['Testbed', 'bc', 'bto', 'abf', 'arc', 'awo', 'pass'])
    df['Total'] = df.sum(axis=1)
    return df
Exemplo n.º 3
0
def test_lsfiles_recursive():
    assert fs.lsfiles("lib/labm8/data/test/testdir", recursive=True) == [
        "a",
        "b",
        "c/e",
        "c/f/f/i",
        "c/f/h",
        "c/g",
        "d",
    ]
Exemplo n.º 4
0
def main(argv):
    """Main entry point."""
    if len(argv) > 1:
        unknown_args = ', '.join(argv[1:])
        raise app.UsageError(f'Unknown arguments "{unknown_args}"')

    logging.info('Initializing datastore.')
    config = pathlib.Path(FLAGS.datastore)
    ds = datastore.DataStore.FromFile(config)

    output_dir = pathlib.Path(FLAGS.output_directory)
    # Make directories to write the classifications to. We use the same shorthand
    # classification names as in Table 2 of the paper:
    #
    #   http://chriscummins.cc/pub/2018-issta.pdf
    (output_dir / 'bc').mkdir(parents=True, exist_ok=True)
    (output_dir / 'bto').mkdir(exist_ok=True)
    (output_dir / 'abf').mkdir(exist_ok=True)
    (output_dir / 'arc').mkdir(exist_ok=True)
    (output_dir / 'awo').mkdir(exist_ok=True)
    (output_dir / 'pass').mkdir(exist_ok=True)
    result_dirs = [
        pathlib.Path(x) for x in FLAGS.input_directories
        if pathlib.Path(x).is_dir()
    ]
    results_paths = labtypes.flatten([
        pathlib.Path(x) for x in fs.lsfiles(x, recursive=True, abspaths=True)
    ] for x in result_dirs)
    logging.info('Importing %d results into datastore ...', len(results_paths))
    with ds.Session(commit=True) as s:
        for path in progressbar.ProgressBar()(results_paths):
            # Instantiating a result from file has the side effect of adding the
            # result object to the datastore's session.
            result.Result.FromFile(s, path)

    with ds.Session() as s:
        testcases = s.query(testcase.Testcase)
        logging.info('Difftesting the results of %d testcases ...',
                     testcases.count())
        for t in progressbar.ProgressBar(
                max_value=testcases.count())(testcases):
            DifftestTestcase(s, t, output_dir)
    df = ReadClassificationsToTable(output_dir)
    print()
    print(
        'Table of results. For each testbed, this shows the number of results')
    print('of each class, using the same shortand as in Table 2 of the paper:')
    print('http://chriscummins.cc/pub/2018-issta.pdf')
    print()
    print(df.to_string(index=False))
    print()
    print('Individual classified programs are written to: '
          f"'{output_dir}/<class>/<device>/'")
Exemplo n.º 5
0
def main(argv):
    """Main entry point."""
    if len(argv) > 1:
        raise app.UsageError("Unknown arguments: '{}'.".format(' '.join(
            argv[1:])))

    if not FLAGS.export_path:
        raise app.UsageError('--export_path must be a directory')
    export_path = pathlib.Path(FLAGS.export_path)
    if export_path.is_file():
        raise app.UsageError('--export_path must be a directory')

    # Make a directory for each outcome class.
    for key in fish_pb2.CompilerCrashDiscriminatorTrainingExample.Outcome.keys(
    ):
        (export_path / key.lower()).mkdir(parents=True, exist_ok=True)

    logging.info('Connecting to MySQL database')
    credentials = GetMySqlCredentials()
    cnx = MySQLdb.connect(database='dsmith_04_opencl',
                          host='cc1',
                          user=credentials[0],
                          password=credentials[1])
    cursor = cnx.cursor()
    logging.info('Determining last export ID')
    ids = sorted([
        int(pathlib.Path(f).stem)
        for f in fs.lsfiles(export_path, recursive=True, abspaths=True)
    ])
    last_export_id = ids[-1] if ids else 0
    logging.info('Exporting results from ID %s', last_export_id)
    ExportOpenCLResults(cursor, last_export_id, export_path)
    cursor.close()
    cnx.close()
    logging.info('Exported training set of %s files to %s',
                 humanize.intcomma(len(list(export_path.iterdir()))),
                 export_path)
Exemplo n.º 6
0
def test_lsfiles_single_file():
    assert fs.lsfiles("lib/labm8/data/test/testdir/a") == ["a"]
Exemplo n.º 7
0
def test_lsfiles_bad_path():
    with pytest.raises(OSError):
        fs.lsfiles("/not/a/real/path/bro")
Exemplo n.º 8
0
def test_lsfiles():
    assert fs.lsfiles("lib/labm8/data/test/testdir") == ["a", "b", "d"]