Exemplo n.º 1
0
    def singleSimulation(self,
                         carbon_source='r_1714',
                         cs_lb=-1.5,
                         geneko=None,
                         o2_lb=None,
                         type='fba'):
        with self.model as m:
            m.set_carbon_source(carbon_source, lb=cs_lb)
            if o2_lb is not None:
                m.reactions.get_by_id('r_1992').lower_bound = float(o2_lb)
            if geneko is not None:
                if type == 'lmoma':
                    r = pfba(m)
                    m.set_environmental_conditions(gene_knockout=geneko)
                    res = lmoma(m, r)
                else:
                    m.set_environmental_conditions(gene_knockout=geneko)

            if type == 'fba':
                res = fba(m)
            elif type == 'pfba':
                res = pfba(m)
            elif type == 'fva':
                res = fva(m, reaction_list=m.reactions, fix_biomass=True)

        return res
Exemplo n.º 2
0
 def testO2EthanolProd (self, g_knockout = None, react_id = 'r_2115', cs = 'glucose', range_o2 = list(np.arange(-20, 0, 2))):
     res = {}
     for i in range_o2:
         with self.model as m:
             m.set_carbon_source(self.cs_reaction[cs], lb = self.cs_lb[cs])
             m.reactions.get_by_id('r_1992').lower_bound = float(i)
             if g_knockout is not None:
                 m.set_environmental_conditions(gene_knockout = g_knockout)
             r = pfba(m)
             if hasattr(r, 'x_dict'): #if legacy solution
                 fluxes = pd.DataFrame(list(r.x_dict.items())).set_index(0)
             else:
                 fluxes = r.fluxes
             res[str(i)] = fluxes.loc[react_id]
     for key, val in sorted(res.items()): print(key, '\t', val)
     return res
Exemplo n.º 3
0
    #Reaction Bounds
    for r in model.reactions:
        print(r.id, '\t', r.lower_bound, '\t', r.upper_bound)

    #SIMULATIONS
    #FBA
    res_fba = fba(model)
    res_fba.objective_value  # The (optimal) value for the objective function.
    res_fba.status  # The solver status related to the solution.
    res_fba.fluxes  # Contains the reaction fluxes (primal values of variables).
    res_fba.reduced_costs  # Contains reaction reduced costs (dual values of variables).
    res_fba.shadow_prices  # Contains metabolite shadow prices (dual values of constraints).

    #PFBA
    res_pfba = pfba(model)
    res_pfba.objective_value
    res_pfba.status
    res_pfba.fluxes
    res_pfba.reduced_costs
    res_pfba.shadow_prices

    #FVA
    res_fva = fva(model, reaction_list=model.reactions)  #pandas dataframe
    res_fva.to_csv('fva_res.csv', sep='\t')

    #RANDOM TESTS
    model.get_model_id()
    model.get_biomass_id()
    model.get_biomass()
    model.get_exchanges_ids()