Exemplo n.º 1
0
def fourier(field: GridType, diffusivity: float or math.Tensor, dt: float
            or math.Tensor) -> FieldType:
    """
    Exact diffusion of a periodic field in frequency space.

    For non-periodic fields or non-constant diffusivity, use another diffusion function such as `explicit()`.

    Args:
        field:
        diffusivity: Diffusion per time. `diffusion_amount = diffusivity * dt`
        dt: Time interval. `diffusion_amount = diffusivity * dt`

    Returns:
        Diffused field of same type as `field`.
    """
    if isinstance(field, ConstantField):
        return field
    assert isinstance(field,
                      Grid), "Cannot diffuse field of type '%s'" % type(field)
    assert field.extrapolation == math.extrapolation.PERIODIC, "Fourier diffusion can only be applied to periodic fields."
    amount = diffusivity * dt
    k = math.fftfreq(field.resolution)
    k2 = math.vec_squared(k)
    fft_laplace = -(2 * math.PI)**2 * k2
    diffuse_kernel = math.exp(fft_laplace * amount)
    result_k = math.fft(field.values) * diffuse_kernel
    result_values = math.real(math.ifft(result_k))
    return field.with_(values=result_values)
Exemplo n.º 2
0
 def grid_sample(self,
                 resolution: math.Shape,
                 size,
                 shape: math.Shape = None):
     shape = (self._shape if shape is None else shape) & resolution
     for dim in channel(self._shape):
         if dim.item_names[0] is None:
             warnings.warn(
                 f"Please provide item names for Noise dim {dim} using {dim}='x,y,z'",
                 FutureWarning)
             shape &= channel(**{dim.name: resolution.names})
     rndj = math.to_complex(random_normal(shape)) + 1j * math.to_complex(
         random_normal(shape))  # Note: there is no complex32
     with math.NUMPY:
         k = math.fftfreq(resolution) * resolution / math.tensor(
             size) * math.tensor(self.scale)  # in physical units
         k = math.vec_squared(k)
     lowest_frequency = 0.1
     weight_mask = math.to_float(k > lowest_frequency)
     # --- Compute 1/k ---
     k._native[(0, ) * len(k.shape)] = np.inf
     inv_k = 1 / k
     inv_k._native[(0, ) * len(k.shape)] = 0
     # --- Compute result ---
     fft = rndj * inv_k**self.smoothness * weight_mask
     array = math.real(math.ifft(fft))
     array /= math.std(array, dim=array.shape.non_batch)
     array -= math.mean(array, dim=array.shape.non_batch)
     array = math.to_float(array)
     return array
Exemplo n.º 3
0
 def show(self, caller_is_main):
     while True:
         for i in range(self.fig_count):
             self.axes[i].clear()
             v = self.app.get_field(self.shown_fields[i])
             if isinstance(v, StaggeredGrid):
                 v = v.at_centers()
             v = math.vec_squared(v.values).native('y, x')
             self.axes[i].imshow(v, origin='lower')
             self.axes[i].set_title(self.shown_fields[i])
         plt.draw()
         plt.pause(0.01)
Exemplo n.º 4
0
    def approximate_signed_distance(self, location):
        """
        Computes the exact distance from location to the closest point on the sphere.
        Very close to the sphere center, the distance takes a constant value.

        Args:
          location: float tensor of shape (batch_size, ..., rank)

        Returns:
          float tensor of shape (*location.shape[:-1], 1).

        """
        distance_squared = math.vec_squared(location - self.center)
        distance_squared = math.maximum(
            distance_squared,
            self.radius * 1e-2)  # Prevent infinite gradient at sphere center
        distance = math.sqrt(distance_squared)
        return distance - self.radius
Exemplo n.º 5
0
 def grid_sample(self, resolution: math.Shape, size, shape: math.Shape = None):
     shape = (self._shape if shape is None else shape).combined(resolution)
     rndj = math.to_complex(random_normal(shape)) + 1j * math.to_complex(random_normal(shape))  # Note: there is no complex32
     with math.NUMPY_BACKEND:
         k = math.fftfreq(resolution) * resolution / size * self.scale  # in physical units
         k = math.vec_squared(k)
     lowest_frequency = 0.1
     weight_mask = 1 / (1 + math.exp((lowest_frequency - k) * 1e3))  # High pass filter
     # --- Compute 1/k ---
     k.native()[(0,) * len(k.shape)] = np.inf
     inv_k = 1 / k
     inv_k.native()[(0,) * len(k.shape)] = 0
     # --- Compute result ---
     fft = rndj * inv_k ** self.smoothness * weight_mask
     array = math.real(math.ifft(fft))
     array /= math.std(array, dim=array.shape.non_batch)
     array -= math.mean(array, dim=array.shape.non_batch)
     array = math.to_float(array)
     return array
Exemplo n.º 6
0
def vec_squared(field: SampledField):
    """ See `phi.math.vec_squared()` """
    if isinstance(field, StaggeredGrid):
        field = field.at_centers()
    return field.with_values(math.vec_squared(field.values))