def convert_cameras(id_to_col_cameras, id_to_col_images, image_dp,
                        image_fp_type, suppress_distortion_warnings, op):
        # From photogrammetry_importer\ext\read_write_model.py
        #   CameraModel = collections.namedtuple(
        #       "CameraModel", ["model_id", "model_name", "num_params"])
        #   Camera = collections.namedtuple(
        #       "Camera", ["id", "model", "width", "height", "params"])
        #   BaseImage = collections.namedtuple(
        #       "Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"])

        cameras = []
        for col_image in id_to_col_images.values():
            current_camera = Camera()
            current_camera.id = col_image.id
            current_camera.set_quaternion(col_image.qvec)
            current_camera.set_camera_translation_vector_after_rotation(
                col_image.tvec)

            current_camera.image_fp_type = image_fp_type
            current_camera.image_dp = image_dp
            current_camera._relative_fp = col_image.name

            camera_model = id_to_col_cameras[col_image.camera_id]

            # op.report({'INFO'}, 'image_id: ' + str(col_image.id))
            # op.report({'INFO'}, 'camera_id: ' + str(col_image.camera_id))
            # op.report({'INFO'}, 'camera_model: ' + str(camera_model))

            current_camera.width = camera_model.width
            current_camera.height = camera_model.height

            focal_length, cx, cy, r = parse_camera_param_list(camera_model)
            if not suppress_distortion_warnings:
                check_radial_distortion(r, current_camera._relative_fp, op)

            camera_calibration_matrix = np.array([[focal_length, 0, cx],
                                                  [0, focal_length, cy],
                                                  [0, 0, 1]])
            current_camera.set_calibration(camera_calibration_matrix,
                                           radial_distortion=0)

            cameras.append(current_camera)

        return cameras
Exemplo n.º 2
0
    def convert_cameras(id_to_col_cameras, id_to_col_images, op):
        # CameraModel = collections.namedtuple(
        #   "CameraModel", ["model_id", "model_name", "num_params"])
        # Camera = collections.namedtuple(
        #    "Camera", ["id", "model", "width", "height", "params"])
        # BaseImage = collections.namedtuple(
        #    "Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"])

        cameras = []
        for col_image in id_to_col_images.values():
            current_camera = Camera()
            current_camera.id = col_image.id
            current_camera.set_quaternion(col_image.qvec)
            current_camera.set_camera_translation_vector_after_rotation(
                col_image.tvec)
            current_camera.file_name = col_image.name
            camera_models = list(id_to_col_cameras.values())
            # Blender supports only one camera model for all images
            assert len(camera_models) == 1
            camera_model = camera_models[0]

            op.report({'INFO'}, 'camera_model: ' + str(camera_model))

            current_camera.width = camera_model.width
            current_camera.height = camera_model.height

            focal_length, cx, cy = parse_camera_param_list(camera_model)
            camera_calibration_matrix = np.array([[focal_length, 0, 0],
                                                  [0, focal_length, 0],
                                                  [0, 0, 1]])
            current_camera.set_calibration(camera_calibration_matrix,
                                           radial_distortion=0)
            current_camera.set_principal_point([cx, cy])

            cameras.append(current_camera)

        return cameras
    def _parse_cameras(input_file, num_cameras, camera_calibration_matrix, op):
        """
        VisualSFM CAMERA coordinate system is the standard CAMERA coordinate system in computer vision (not the same
        as in computer graphics like in bundler, blender, etc.)
        That means
              the y axis in the image is pointing downwards (not upwards)
              the camera is looking along the positive z axis (points in front of the camera show a positive z value)

        The camera coordinate system in computer vision VISUALSFM uses camera matrices,
        which are rotated around the x axis by 180 degree
        i.e. the y and z axis of the CAMERA MATRICES are inverted
        therefore, the y and z axis of the TRANSLATION VECTOR are also inverted
        """
        # op.report({'INFO'}, '_parse_cameras: ...')
        cameras = []

        for i in range(num_cameras):
            line = input_file.readline()

            # Read the camera section
            # From the docs:
            # <Camera> = <File name> <focal length> <quaternion WXYZ> <camera center> <radial distortion> 0
            line_values = line.split()
            file_name = os.path.basename(line_values[0])
            focal_length = float(line_values[1])

            quaternion_w = float(line_values[2])
            quaternion_x = float(line_values[3])
            quaternion_y = float(line_values[4])
            quaternion_z = float(line_values[5])
            quaternion = np.array(
                [quaternion_w, quaternion_x, quaternion_y, quaternion_z],
                dtype=float)

            camera_center_x = float(line_values[6])
            camera_center_y = float(line_values[7])
            camera_center_z = float(line_values[8])
            center_vec = np.array(
                [camera_center_x, camera_center_y, camera_center_z])

            radial_distortion = float(line_values[9])

            # TODO radial_distortion in camera_calibration_matrix
            if camera_calibration_matrix is None:
                camera_calibration_matrix = np.array([[focal_length, 0, 0],
                                                      [0, focal_length, 0],
                                                      [0, 0, 1]])

            zero_value = float(line_values[10])
            assert (zero_value == 0)

            current_camera = Camera()
            # Setting the quaternion also sets the rotation matrix
            current_camera.set_quaternion(quaternion)

            # Set the camera center after rotation
            # COMMENT FROM PBA CODE:
            #   older format for compability
            #   camera_data[i].SetQuaternionRotation(q); // quaternion from the file
            #   camera_data[i].SetCameraCenterAfterRotation(c); // camera center from the file
            current_camera._center = center_vec

            # set the camera view direction as normal w.r.t world coordinates
            cam_view_vec_cam_coord = np.array([0, 0, 1]).T
            cam_rotation_matrix_inv = np.linalg.inv(
                current_camera.get_rotation_mat())
            cam_view_vec_world_coord = cam_rotation_matrix_inv.dot(
                cam_view_vec_cam_coord)
            current_camera.normal = cam_view_vec_world_coord

            translation_vec = NVMFileHandler.compute_camera_coordinate_system_translation_vector(
                center_vec, current_camera.get_rotation_mat())
            current_camera._translation_vec = translation_vec

            current_camera.set_calibration_mat(camera_calibration_matrix)
            # op.report({'INFO'}, 'Calibration mat:')
            # op.report({'INFO'}, str(camera_calibration_matrix))
            current_camera.file_name = file_name
            current_camera.id = i
            cameras.append(current_camera)
        # op.report({'INFO'}, '_parse_cameras: Done')
        return cameras