def evaluate_simple_agent(tasks, tier):
    """Evaluates the random agent on the given tasks/tier.

  Args:
      tasks: A list of task instances (strings) in the split to evaluate.
      tier: A string of the action tier.

  Returns:
      A Evaluator object updated with the results of all the siulations.
  """

    # Create a simulator for the task and tier.
    simulator = phyre.initialize_simulator(tasks, tier)
    evaluator = phyre.Evaluator(tasks)
    assert tuple(tasks) == simulator.task_ids
    tasks_solved = 0
    for task_index in tqdm(range(len(tasks)), desc='Evaluate tasks'):
        domain = [{
            'name': 'var1',
            'type': 'continuous',
            'domain': (0, 1)
        }, {
            'name': 'var2',
            'type': 'continuous',
            'domain': (0, 1)
        }, {
            'name': 'var3',
            'type': 'continuous',
            'domain': (0, 1)
        }]

        X_init = np.array([[0.5, .5, .5]])
        eval_result = evalAction(X_init, simulator, task_index, evaluator)
        Y_init = np.array([[eval_result['score']]])

        X_step = X_init
        Y_step = Y_init

        solved_task = eval_result['solved']
        while evaluator.get_attempts_for_task(
                task_index) < phyre.MAX_TEST_ATTEMPTS and not solved_task:
            bo_step = GPyOpt.methods.BayesianOptimization(
                f=None,
                domain=domain,
                X=X_step,
                Y=Y_step,
                de_duplication=True,
                acquisition_type='MPI',
                model_type='sparseGP')
            x_next = bo_step.suggest_next_locations()
            eval_result = evalAction(x_next, simulator, task_index, evaluator)
            X_step = np.vstack((X_step, x_next))
            Y_step = np.vstack((Y_step, eval_result['score']))
            #if eval_result['valid']:
            #  print(tasks[task_index],evaluator.get_attempts_for_task(task_index),x_next,eval_result)
            if eval_result['solved']:
                solved_task = True

    print(tasks_solved, "Tasks solved out of ", len(tasks), "Total Tasks")
    return evaluator
Exemplo n.º 2
0
def compact_simulation_data_to_trainset(action_tier_name: str,
                                        actions: np.ndarray,
                                        simulation_statuses: Sequence[int],
                                        task_ids: TaskIds) -> TrainData:
    """Converts result of SimulationCache.get_data() to pytorch tensors.

    The format of the output is the same as in create_balanced_eval_set.
    """
    invalid = int(phyre.SimulationStatus.INVALID_INPUT)
    solved = int(phyre.SimulationStatus.SOLVED)

    task_indices = np.repeat(np.arange(len(task_ids)).reshape((-1, 1)),
                             actions.shape[0],
                             axis=1).reshape(-1)
    action_indices = np.repeat(np.arange(actions.shape[0]).reshape((1, -1)),
                               len(task_ids),
                               axis=0).reshape(-1)
    simulation_statuses = simulation_statuses.reshape(-1)

    good_statuses = simulation_statuses != invalid
    is_solved = torch.LongTensor(
        simulation_statuses[good_statuses].astype('uint8')) == solved
    action_indices = action_indices[good_statuses]
    actions = torch.FloatTensor(actions[action_indices])
    task_indices = torch.LongTensor(task_indices[good_statuses])

    simulator = phyre.initialize_simulator(task_ids, action_tier_name)
    observations = torch.LongTensor(simulator.initial_scenes)
    return task_indices, is_solved, actions, simulator, observations
Exemplo n.º 3
0
    def eval(self, state, task_ids, tier):
        model = state['model']
        cache = state['cache']
        # NOTE: Current agent is only using the actions that are seen in the training set,
        #       though agent has the ability to rank the actions that are not seen in the training set
        actions = state['cache'].action_array[:self.params['rank_size']]

        model.cuda()
        simulator = phyre.initialize_simulator(task_ids, tier)
        observations = simulator.initial_scenes
        evaluator = phyre.Evaluator(task_ids)

        for task_index in range(len(task_ids)):
            task_id = simulator.task_ids[task_index]
            observation = observations[task_index]
            scores = self.neural_model.eval_actions(
                model, actions, self.params['eval_batch_size'], observation)
            # Rank of the actions in descending order
            action_order = np.argsort(-scores)
            # Result of the actions are already stored in cache
            statuses = cache.load_simulation_states(task_id)

            for action_id in action_order:
                if evaluator.get_attempts_for_task(
                        task_index) >= self.params['max_attempts_per_task']:
                    break
                status = phyre.SimulationStatus(statuses[action_id])
                evaluator.maybe_log_attempt(task_index, status)
        return evaluator
Exemplo n.º 4
0
    def _create_balanced_eval_set(self, cache, task_ids, size, tier):
        """
        Prepares balanced eval set to run through a network.
        Selects (size // 2) positive (task, action) pairs and (size // 2) negative pairs and represents them into pytorch tensors.

        The format of the output is the same as in _compact_simulation_data_to_trainset.
        """
        task_ids = tuple(task_ids)
        data = cache.get_sample(task_ids)

        actions = data['actions']
        simulation_statuses = data['simulation_statuses']

        flat_statuses = simulation_statuses.reshape(-1)
        [positive_indices
         ] = (flat_statuses == int(phyre.SimulationStatus.SOLVED)).nonzero()
        [negative_indices] = (flat_statuses == int(
            phyre.SimulationStatus.NOT_SOLVED)).nonzero()

        half_size = size // 2
        rng = np.random.RandomState(42)
        # If the number of indices are smaller than the half_size, indices can overlap
        positive_indices = rng.choice(positive_indices, half_size)
        negative_indices = rng.choice(negative_indices, half_size)

        all_indices = np.concatenate([positive_indices, negative_indices])
        selected_actions = torch.FloatTensor(actions[all_indices %
                                                     len(actions)])
        is_solved = torch.LongTensor(
            flat_statuses[all_indices].astype('int')) > 0
        task_indices = torch.LongTensor(all_indices // len(actions))

        simulator = phyre.initialize_simulator(task_ids, tier)
        observations = torch.LongTensor(simulator.initial_scenes)
        return task_indices, is_solved, selected_actions, simulator, observations
Exemplo n.º 5
0
def create_balanced_eval_set(cache, task_ids, size, tier):
    """Select a balanced set of max_size triples(task_id, status, action)."""
    task_ids = tuple(task_ids)
    data = cache.get_sample(task_ids)
    actions = data['actions']
    simulation_statuses = data['simulation_statuses']

    flat_statuses = simulation_statuses.reshape(-1)
    [positive_indices] = (flat_statuses == int(
        phyre.SimulationStatus.SOLVED)).nonzero()
    [negative_indices] = (flat_statuses == int(
        phyre.SimulationStatus.NOT_SOLVED)).nonzero()

    half_size = size // 2
    rng = np.random.RandomState(42)
    positive_indices = rng.choice(positive_indices, half_size)
    negative_indices = rng.choice(negative_indices, half_size)

    all_indices = np.concatenate([positive_indices, negative_indices])
    selected_actions = torch.FloatTensor(actions[all_indices % len(actions)])
    is_solved = torch.LongTensor(flat_statuses[all_indices].astype('int')) > 0
    task_indices = torch.LongTensor(all_indices // len(actions))

    simulator = phyre.initialize_simulator(task_ids, tier)
    observations = torch.LongTensor(simulator.initial_scenes)
    return task_indices, is_solved, selected_actions, simulator, observations
Exemplo n.º 6
0
    def __init__(self, config):
        self.start_template_id = config.start_template_id
        self.end_template_id = config.end_template_id
        self.num_mods = config.num_mods
        self.action_tier = config.action_tier
        self.task_id = config.task_id

        self.action_mappers = action_mappers.ACTION_MAPPERS[self.action_tier]()

        tasks_map, _ = load_compiled_task_dict()
        task_ids = []
        if self.task_id is not None:
            task_ids.append(self.task_id)
        else:
            self.template_num = self.end_template_id - self.start_template_id + 1
            for i in range(self.start_template_id, self.end_template_id + 1,
                           1):
                task_mods = tasks_map[str(i).zfill(5)]
                for j in range(self.num_mods):
                    task_ids.append(str(i).zfill(5) + ":" + task_mods[j])

        # print("tasks: ",)
        # print(task_ids)

        self.simulator = phyre.initialize_simulator(task_ids, self.action_tier)

        self.tasks = []
        for task_index in range(len(task_ids)):
            id = self.simulator.task_ids[task_index]
            initial_scene = self.simulator.initial_scenes[task_index]
            initial_featurized_objects = self.simulator.initial_featurized_objects[
                task_index]
            task = Task(id, initial_scene, initial_featurized_objects)
            self.tasks.append(task)
Exemplo n.º 7
0
    def real_eval(cls, cache, model, actions, task_ids, tier,
                  max_attempts_per_task, eval_batch_size, finetune_iterations,
                  refine_iterations, refine_loss, refine_lr):

        # TODO: move to a flag.
        finetune_lr = 1e-4

        model.cuda()

        simulator = phyre.initialize_simulator(task_ids, tier)
        observations = simulator.initial_scenes
        assert tuple(task_ids) == simulator.task_ids

        logging.info('Ranking %d actions and simulating top %d', len(actions),
                     max_attempts_per_task)
        if refine_iterations > 0:
            logging.info(
                'Will do refining for %d iterations with lr=%e and loss=%s',
                refine_iterations, refine_lr, refine_loss)
        evaluator = phyre.Evaluator(task_ids)
        for task_index in tqdm.trange(len(task_ids)):
            task_id = simulator.task_ids[task_index]
            if refine_iterations > 0:
                refined_actions = neural_agent.refine_actions(
                    model, actions, observations[task_index], refine_lr,
                    refine_iterations, eval_batch_size, refine_loss)
            else:
                refined_actions = actions
            scores = neural_agent.eval_actions(model, refined_actions,
                                               eval_batch_size,
                                               observations[task_index])
            # Order of descendig scores.
            action_order = np.argsort(-scores)
            if not refine_iterations > 0:
                statuses = cache.load_simulation_states(task_id)

            finetune_data = []
            for action_id in action_order:
                if evaluator.get_attempts_for_task(
                        task_index) >= max_attempts_per_task:
                    break
                action = refined_actions[action_id]
                if refine_iterations > 0:
                    status = simulator.simulate_action(
                        task_index,
                        action,
                        need_images=False,
                        need_scenes=False).status
                else:
                    status = phyre.SimulationStatus(statuses[action_id])
                finetune_data.append((task_index, status, action))
                evaluator.maybe_log_attempt(task_index, status)
            if evaluator.get_attempts_for_task(task_index) == 0:
                logging.warning('Made 0 attempts for task %s', task_id)
            if finetune_iterations > 0:
                neural_agent.finetune(model, finetune_data, simulator,
                                      finetune_lr, finetune_iterations)

        return evaluator
Exemplo n.º 8
0
def _worker(action_tier, task_id, num_jobs, num_actions, job_id):
    action_path = (
        phyre.simulation_cache.get_partial_cache_folder(num_actions) /
        action_tier / phyre.simulation_cache.ACTION_FILE_NAME)
    actions = joblib.load(action_path)
    sim = phyre.initialize_simulator([task_id], action_tier)

    actions = np.array_split(actions, num_jobs)[job_id]
    statuses = [
        int(sim.simulate_action(0, action, need_images=False).status)
        for action in actions
    ]
    return statuses
Exemplo n.º 9
0
def evaluate_simple_agent(tasks, tier):
    """Evaluates the random agent on the given tasks/tier.

  Args:
      tasks: A list of task instances (strings) in the split to evaluate.
      tier: A string of the action tier.

  Returns:
      A Evaluator object updated with the results of all the siulations.
  """

    # Create a simulator for the task and tier.
    simulator = phyre.initialize_simulator(tasks, tier)
    evaluator = phyre.Evaluator(tasks)
    assert tuple(tasks) == simulator.task_ids
    tasks_solved = 0
    for task_index in tqdm(range(len(tasks)), desc='Evaluate tasks'):
        simFunc = partial(evalAction,
                          simulator=simulator,
                          task_index=task_index,
                          evaluator=evaluator)
        space = {
            'x': hp.uniform('x', 0, 1),
            'y': hp.uniform('y', 0, 1),
            'r': hp.uniform('r', 0, 1),
        }
        trials = Trials()

        max_evals = 0

        solved_task = False
        while evaluator.get_attempts_for_task(
                task_index) < phyre.MAX_TEST_ATTEMPTS and not solved_task:
            max_evals += phyre.MAX_TEST_ATTEMPTS - evaluator.get_attempts_for_task(
                task_index)
            best = fmin(simFunc,
                        space=space,
                        algo=tpe.suggest,
                        max_evals=max_evals,
                        trials=trials,
                        rstate=random.seed(0),
                        show_progressbar=False)
            counter = Counter(result['solved'] for result in trials.results)
            solved_task = counter[True] > 0
            if solved_task:
                tasks_solved += 1

    print(tasks_solved, "Tasks solved out of ", len(tasks), "Total Tasks")
    return evaluator
Exemplo n.º 10
0
def create_balanced_eval_set(cache: phyre.SimulationCache, task_ids: TaskIds,
                             size: int, tier: str) -> TrainData:
    """Prepares balanced eval set to run through a network.

    Selects (size // 2) positive (task, action) pairs and (size // 2)
    negative pairs and represents them in a compact formaer

    Returns a tuple
        (task_indices, is_solved, selected_actions, simulator, observations).

        Tensors task_indices, is_solved, selected_actions, observations, all
        have lengths size and correspond to some (task, action) pair.
        For any i the following is true:
            is_solved[i] is true iff selected_actions[i] solves task
            task_ids[task_indices[i]].
    """
    task_ids = tuple(task_ids)
    data = cache.get_sample(task_ids)
    actions = data['actions']
    # Array [num_tasks, num_actions].
    simulation_statuses = data['simulation_statuses']

    flat_statuses = simulation_statuses.reshape(-1)
    [positive_indices
    ] = (flat_statuses == int(phyre.SimulationStatus.SOLVED)).nonzero()
    [negative_indices
    ] = (flat_statuses == int(phyre.SimulationStatus.NOT_SOLVED)).nonzero()

    half_size = size // 2
    rng = np.random.RandomState(42)
    positive_indices = rng.choice(positive_indices, half_size)
    negative_indices = rng.choice(negative_indices, half_size)

    all_indices = np.concatenate([positive_indices, negative_indices])
    selected_actions = torch.FloatTensor(actions[all_indices % len(actions)])
    is_solved = torch.LongTensor(flat_statuses[all_indices].astype('int')) > 0

    all_task_indices = np.arange(len(task_ids)).repeat(actions.shape[0])
    positive_task_indices = all_task_indices[positive_indices]
    negative_task_indices = all_task_indices[negative_indices]
    task_indices = torch.LongTensor(
        np.concatenate([positive_task_indices, negative_task_indices]))

    simulator = phyre.initialize_simulator(task_ids, tier)
    observations = torch.LongTensor(simulator.initial_scenes)
    return task_indices, is_solved, selected_actions, simulator, observations
Exemplo n.º 11
0
    def __init__(self, data_root, split, image_ext='.jpg'):
        self.data_root = data_root
        self.split = split
        self.image_ext = image_ext
        self.input_size = C.RPIN.INPUT_SIZE  # number of input images
        self.pred_size = eval(
            f'C.RPIN.PRED_SIZE_{"TRAIN" if split == "train" else "TEST"}')
        self.seq_size = self.input_size + self.pred_size
        self.input_height, self.input_width = C.RPIN.INPUT_HEIGHT, C.RPIN.INPUT_WIDTH

        protocal = C.PHYRE_PROTOCAL
        fold = C.PHYRE_FOLD

        num_pos = 400 if split == 'train' else 100
        num_neg = 1600 if split == 'train' else 400

        eval_setup = f'ball_{protocal}_template'
        train_tasks, dev_tasks, test_tasks = phyre.get_fold(eval_setup, fold)
        tasks = train_tasks + dev_tasks if split == 'train' else test_tasks
        action_tier = phyre.eval_setup_to_action_tier(eval_setup)

        # all the actions
        cache = phyre.get_default_100k_cache('ball')
        training_data = cache.get_sample(tasks, None)
        # (100000 x 3)
        actions = training_data['actions']
        # (num_tasks x 100000)
        sim_statuses = training_data['simulation_statuses']

        self.simulator = phyre.initialize_simulator(tasks, action_tier)

        self.video_info = np.zeros((0, 4))
        for t_id, t in enumerate(tqdm(tasks)):
            sim_status = sim_statuses[t_id]
            pos_acts = actions[sim_status == 1].copy()
            neg_acts = actions[sim_status == -1].copy()
            np.random.shuffle(pos_acts)
            np.random.shuffle(neg_acts)
            pos_acts = pos_acts[:num_pos]
            neg_acts = neg_acts[:num_neg]
            acts = np.concatenate([pos_acts, neg_acts])
            video_info = np.zeros((acts.shape[0], 4))
            video_info[:, 0] = t_id
            video_info[:, 1:] = acts
            self.video_info = np.concatenate([self.video_info, video_info])
Exemplo n.º 12
0
 def _gen_simulator(self):
     drop_objs_lst = ()
     if not isinstance(self.drop_objs, int) and not self.drop_objs:
         # i.e. empty list, or None (and not an integer ID of obj to drop)
         pass
     elif isinstance(self.drop_objs, int):
         drop_objs_lst = (self.drop_objs, )
     elif isinstance(self.drop_objs, str):
         drop_objs_lst = (int(el) for el in self.drop_objs.split(';'))
     else:
         logging.warning('Not sure what was passed as drop objs %s',
                         self.drop_objs)
         drop_objs_lst = ()
     simulator = phyre.initialize_simulator(self.task_ids,
                                            self.tier,
                                            drop_objs=drop_objs_lst)
     phyre_sim = hydra.utils.instantiate(self.simulator_cfg, simulator,
                                         self.obj_fwd_model)
     return phyre_sim
Exemplo n.º 13
0
def evaluate_random_agent(tasks, tier):
    # Create a simulator for the task and tier.
    simulator = phyre.initialize_simulator(tasks, tier)
    evaluator = phyre.Evaluator(tasks)
    assert tuple(tasks) == simulator.task_ids
    images = []
    actions = []
    for task_index in tqdm_notebook(range(len(tasks)), desc='Evaluate tasks'):
        while evaluator.get_attempts_for_task(
                task_index) < phyre.MAX_TEST_ATTEMPTS:
            # Sample a random valid action from the simulator for the given action space.
            action = simulator.sample()
            # Simulate the given action and add the status from taking the action to the evaluator.
            status = simulator.simulate_action(task_index,
                                               action,
                                               need_images=True)

            stati = status.status
            actions.append(action)
            images.append(status.images)
            evaluator.maybe_log_attempt(task_index, stati)
    return evaluator, images, actions
Exemplo n.º 14
0
def count_ball_sizes(task_ids, tier, ball_sizes, num_pos):
    cache = phyre.get_default_100k_cache(tier)
    simulator = phyre.initialize_simulator(task_ids, tier)
    num_solved = 0
    positions = np.linspace(0, 1, num_pos)
    for task_index, task_id in tqdm(enumerate(task_ids),
                                    desc='Evaluate Tasks',
                                    total=len(task_ids)):
        statuses = cache.load_simulation_states(task_id)
        solved_actions = cache.action_array[statuses ==
                                            phyre.simulation_cache.SOLVED, :]
        solved_actions[:,
                       2] = ball_sizes[abs(solved_actions[:, 2][None, :] -
                                           ball_sizes[:, None]).argmin(axis=0)]
        for solved_action in solved_actions:
            sim_result = simulator.simulate_action(task_index,
                                                   solved_action,
                                                   need_images=False)
            if sim_result.status.is_solved():
                num_solved += 1
                break
    return num_solved
Exemplo n.º 15
0
    def _compact_simulation_data_to_trainset(self, tier, data):
        """
        Converts result of SimulationCache.get_data() to pytorch tensors.

        Returns a tuple (task_indices, is_solved, selected_actions, simulator, observations).
        task_indices, is_solved, selected_actions, observations are all tensors corresponding to (task, action) pair
        is_solved[i] is true iff selected_actions[i] solves task(task_ids[task_indices[i]]).
        """
        actions = data['actions']
        simulation_statuses = data['simulation_statuses']
        task_ids = data['task_ids']

        invalid = int(phyre.SimulationStatus.INVALID_INPUT)
        solved = int(phyre.SimulationStatus.SOLVED)

        # Making indices to build the (task, action) pair
        task_indices = np.repeat(np.arange(len(task_ids)).reshape((-1, 1)),
                                 actions.shape[0],
                                 axis=1).reshape(-1)
        action_indices = np.repeat(np.arange(actions.shape[0]).reshape(
            (1, -1)),
                                   len(task_ids),
                                   axis=0).reshape(-1)
        # len(simulation_statues) = len(task) * len(action)
        simulation_statuses = simulation_statuses.reshape(-1)

        # Filter for the valid actions
        good_statuses = simulation_statuses != invalid
        is_solved = torch.LongTensor(
            simulation_statuses[good_statuses].astype('uint8')) == solved
        action_indices = action_indices[good_statuses]
        actions = torch.FloatTensor(actions[action_indices])
        task_indices = torch.LongTensor(task_indices[good_statuses])

        simulator = phyre.initialize_simulator(task_ids, tier)
        observations = torch.LongTensor(simulator.initial_scenes)
        #pdb.set_trace()
        return task_indices, is_solved, actions, simulator, observations
Exemplo n.º 16
0
    def eval(cls, state: State, task_ids: TaskIds, max_attempts_per_task: int,
             tier: str, **kwargs):

        cache = state['cache']
        evaluator = phyre.Evaluator(task_ids)
        simulator = phyre.initialize_simulator(task_ids, tier)

        assert tuple(task_ids) == simulator.task_ids
        for i, task_id in enumerate(task_ids):
            statuses = cache.load_simulation_states(task_id)
            valid_mask = statuses != phyre.simulation_cache.INVALID
            actions, statuses = cache.action_array[valid_mask], statuses[
                valid_mask]
            for action, status in zip(actions, statuses):
                if evaluator.get_attempts_for_task(i) >= max_attempts_per_task:
                    break
                if cls.in_prior(action, simulator._tasks[i].scene.bodies):
                    evaluator.maybe_log_attempt(i, status)
            else:
                print("Not enough actions in prior", task_id,
                      evaluator.get_attempts_for_task(i))

        return evaluator
Exemplo n.º 17
0
def simulate_result(chosen_action, chosen_score, model_number,
                    generation_number):
    eval_setup = 'ball_cross_template'
    fold_id = 0  # For simplicity, we will just use one fold for evaluation.
    train_tasks, dev_tasks, test_tasks = phyre.get_fold(eval_setup, 0)
    action_tier = phyre.eval_setup_to_action_tier(eval_setup)
    tasks = dev_tasks[0:1]
    simulator = phyre.initialize_simulator(tasks, action_tier)
    evaluator = phyre.Evaluator(tasks)
    # Simulate the given action and add the status from taking the action to the evaluator.
    simulation_result = simulator.simulate_action(0,
                                                  chosen_action,
                                                  need_images=True,
                                                  need_featurized_objects=True)
    simulation_score = sf.ScoreFunctionValue(simulation_result)
    pair = np.array([chosen_action, simulation_score])
    timestr = time.strftime("%Y%m%d-%H%M%S")
    score_pair = [
        chosen_score, simulation_score, model_number, generation_number
    ]
    score_string = "ScoreLog" + timestr
    path = "/home/kyra/Desktop/phyre/agents/Scores"
    np.save(os.path.join(path, score_string), score_pair)
    return pair, simulation_result
Exemplo n.º 18
0
def compact_simulation_data_to_trainset(action_tier_name, actions,
                                        simulation_statuses, task_ids):

    invalid = int(phyre.SimulationStatus.INVALID_INPUT)
    solved = int(phyre.SimulationStatus.SOLVED)

    task_indices = np.repeat(
        np.arange(len(task_ids)).reshape((-1, 1)), actions.shape[0],
        axis=1).reshape(-1)
    action_indices = np.repeat(
        np.arange(actions.shape[0]).reshape((1, -1)), len(task_ids),
        axis=0).reshape(-1)
    simulation_statuses = simulation_statuses.reshape(-1)

    good_statuses = simulation_statuses != invalid
    is_solved = torch.LongTensor(
        simulation_statuses[good_statuses].astype('uint8')) == solved
    action_indices = action_indices[good_statuses]
    actions = torch.FloatTensor(actions[action_indices])
    task_indices = torch.LongTensor(task_indices[good_statuses])

    simulator = phyre.initialize_simulator(task_ids, action_tier_name)
    observations = torch.LongTensor(simulator.initial_scenes)
    return task_indices, is_solved, actions, simulator, observations
Exemplo n.º 19
0
    def test(self, start_id=0, end_id=25):
        random.seed(0)
        np.random.seed(0)
        protocal, fold_id = C.PHYRE_PROTOCAL, C.PHYRE_FOLD
        self.score_model.eval()
        print(f'testing using protocal {protocal} and fold {fold_id}')

        # setup the PHYRE evaluation split
        eval_setup = f'ball_{protocal}_template'
        action_tier = phyre.eval_setup_to_action_tier(eval_setup)
        _, _, test_tasks = phyre.get_fold(eval_setup, fold_id)  # PHYRE setup
        candidate_list = [f'{i:05d}'
                          for i in range(start_id, end_id)]  # filter tasks
        test_list = [
            task for task in test_tasks if task.split(':')[0] in candidate_list
        ]
        simulator = phyre.initialize_simulator(test_list, action_tier)

        # the action candidates are provided by the author of PHYRE benchmark
        num_actions = 10000
        cache = phyre.get_default_100k_cache('ball')
        acts = cache.action_array[:num_actions]
        training_data = cache.get_sample(test_list, None)

        # some statistics variable when doing the evaluation
        auccess = np.zeros((len(test_list), 100))
        batched_pred = C.SOLVER.BATCH_SIZE
        objs_color = None
        all_data, all_acts, all_rois, all_image = [], [], [], []

        # cache the initial bounding boxes from the simulator
        os.makedirs('cache', exist_ok=True)

        t_list = tqdm(test_list, 'Task')
        for task_id, task in enumerate(t_list):
            sim_statuses = training_data['simulation_statuses'][task_id]
            confs, successes = [], []

            boxes_cache_name = f'cache/{task.replace(":", "_")}.hkl'
            use_cache = os.path.exists(boxes_cache_name)
            all_boxes = hickle.load(boxes_cache_name) if use_cache else []

            valid_act_id = 0
            for act_id, act in enumerate(
                    tqdm(acts, 'Candidate Action', leave=False)):
                sim = simulator.simulate_action(task_id,
                                                act,
                                                stride=60,
                                                need_images=True,
                                                need_featurized_objects=True)
                assert sim.status == sim_statuses[
                    act_id], 'sanity check not passed'
                if sim.status == phyre.SimulationStatus.INVALID_INPUT:
                    if act_id == len(acts) - 1 and len(
                            all_data) > 0:  # final action is invalid
                        conf_t = self.batch_score(all_data, all_rois,
                                                  all_image, objs_color)
                        confs = confs + conf_t
                        all_data, all_acts, all_rois, all_image = [], [], [], []
                    continue
                successes.append(sim.status == phyre.SimulationStatus.SOLVED)

                # parse object, prepare input for network, the logic is the same as tools/gen_phyre.py
                image = cv2.resize(sim.images[0],
                                   (self.input_width, self.input_height),
                                   interpolation=cv2.INTER_NEAREST)
                all_image.append(image[::-1])
                image = phyre.observations_to_float_rgb(image)
                objs_color = sim.featurized_objects.colors
                objs_valid = [('BLACK' not in obj_color)
                              and ('PURPLE' not in obj_color)
                              for obj_color in objs_color]
                objs = sim.featurized_objects.features[:, objs_valid, :]
                objs_color = np.array(objs_color)[objs_valid]
                num_objs = objs.shape[1]

                if use_cache:
                    boxes = all_boxes[valid_act_id]
                    valid_act_id += 1
                else:
                    boxes = np.zeros((1, num_objs, 5))
                    for o_id in range(num_objs):
                        mask = phyre.objects_util.featurized_objects_vector_to_raster(
                            objs[0][[o_id]])
                        mask_im = phyre.observations_to_float_rgb(mask)
                        mask_im[mask_im == 1] = 0
                        mask_im = mask_im.sum(-1) > 0

                        [h, w] = np.where(mask_im)
                        x1, x2, y1, y2 = w.min(), w.max(), h.min(), h.max()
                        x1 *= (self.input_width - 1) / (phyre.SCENE_WIDTH - 1)
                        x2 *= (self.input_width - 1) / (phyre.SCENE_WIDTH - 1)
                        y1 *= (self.input_height - 1) / (phyre.SCENE_HEIGHT -
                                                         1)
                        y2 *= (self.input_height - 1) / (phyre.SCENE_HEIGHT -
                                                         1)
                        boxes[0, o_id] = [o_id, x1, y1, x2, y2]
                    all_boxes.append(boxes)

                data = image.transpose((2, 0, 1))[None, None, :]
                data = torch.from_numpy(data.astype(np.float32))
                rois = torch.from_numpy(boxes[...,
                                              1:].astype(np.float32))[None, :]

                all_data.append(data)
                all_rois.append(rois)

                if len(all_data) % batched_pred == 0 or act_id == len(
                        acts) - 1:
                    conf_t = self.batch_score(all_data, all_rois, all_image,
                                              objs_color)
                    confs = confs + conf_t
                    all_data, all_rois, all_image = [], [], []

            if not use_cache:
                all_boxes = np.stack(all_boxes)
                hickle.dump(all_boxes,
                            boxes_cache_name,
                            mode='w',
                            compression='gzip')

            info = f'current AUCESS: '
            top_acc = np.array(successes)[np.argsort(confs)[::-1]]
            for i in range(100):
                auccess[task_id, i] = int(np.sum(top_acc[:i + 1]) > 0)
            w = np.array([np.log(k + 1) - np.log(k) for k in range(1, 101)])
            s = auccess[:task_id + 1].sum(0) / auccess[:task_id + 1].shape[0]
            info += f'{np.sum(w * s) / np.sum(w) * 100:.2f}'
            t_list.set_description(info)
Exemplo n.º 20
0
    def gen_proposal(self, start_id=0, end_id=25):
        random.seed(0)
        np.random.seed(0)
        protocal = C.PHYRE_PROTOCAL
        fold_id = C.PHYRE_FOLD
        print(f'generate proposal for {protocal} fold {fold_id}')
        max_p_acts, max_n_acts, max_acts = 200, 800, 100000
        self.proposal_dir = f'{self.output_dir.split("/")[-1]}_' \
                            f'p{max_p_acts}n{max_n_acts}a{max_acts // 1000}'
        eval_setup = f'ball_{protocal}_template'
        action_tier = phyre.eval_setup_to_action_tier(eval_setup)
        train_tasks, dev_tasks, test_tasks = phyre.get_fold(
            eval_setup, fold_id)
        # filter task
        train_tasks = train_tasks + dev_tasks
        candidate_list = [f'{i:05d}' for i in range(start_id, end_id)]

        for split in ['train', 'test']:
            train_list = [
                task for task in train_tasks
                if task.split(':')[0] in candidate_list
            ]
            test_list = [
                task for task in test_tasks
                if task.split(':')[0] in candidate_list
            ]
            if len(eval(f'{split}_list')) == 0:
                return

            simulator = phyre.initialize_simulator(eval(f'{split}_list'),
                                                   action_tier)
            cache = phyre.get_default_100k_cache('ball')
            training_data = cache.get_sample(eval(f'{split}_list'), None)
            actions = cache.action_array[:max_acts]

            final_list = eval(f'{split}_list')
            t_list = tqdm(final_list, 'Task')
            for task_id, task in enumerate(t_list):
                box_cache_name = f'data/PHYRE_proposal/cache/{task.replace(":", "_")}_box.hkl'
                act_cache_name = f'data/PHYRE_proposal/cache/{task.replace(":", "_")}_act.hkl'
                use_cache = os.path.exists(box_cache_name) and os.path.exists(
                    act_cache_name)
                if use_cache:
                    acts = hickle.load(act_cache_name)
                    all_boxes = hickle.load(box_cache_name)
                else:
                    sim_statuses = training_data['simulation_statuses'][
                        task_id]
                    pos_acts = actions[sim_statuses == 1]
                    neg_acts = actions[sim_statuses == -1]
                    np.random.shuffle(pos_acts)
                    np.random.shuffle(neg_acts)
                    pos_acts = pos_acts[:max_p_acts]
                    neg_acts = neg_acts[:max_n_acts]
                    acts = np.concatenate([pos_acts, neg_acts])
                    hickle.dump(acts,
                                act_cache_name,
                                mode='w',
                                compression='gzip')
                    all_boxes = []

                valid_act_id = 0
                for act_id, act in enumerate(
                        tqdm(acts, 'Candidate Action', leave=False)):
                    sim = simulator.simulate_action(
                        task_id,
                        act,
                        stride=60,
                        need_images=True,
                        need_featurized_objects=True)
                    if not use_cache:
                        if act_id < len(pos_acts):
                            assert sim.status == phyre.SimulationStatus.SOLVED
                        else:
                            assert sim.status == phyre.SimulationStatus.NOT_SOLVED

                    assert sim.status != phyre.SimulationStatus.INVALID_INPUT
                    raw_images = sim.images

                    rst_images = np.stack([
                        np.ascontiguousarray(
                            cv2.resize(rst_image,
                                       (self.input_width, self.input_height),
                                       interpolation=cv2.INTER_NEAREST)[::-1])
                        for rst_image in raw_images
                    ])

                    # prepare input for network:
                    image = cv2.resize(raw_images[0],
                                       (self.input_width, self.input_height),
                                       interpolation=cv2.INTER_NEAREST)
                    image = phyre.observations_to_float_rgb(image)
                    # parse object
                    objs_color = sim.featurized_objects.colors
                    objs_valid = [('BLACK' not in obj_color)
                                  and ('PURPLE' not in obj_color)
                                  for obj_color in objs_color]
                    objs = sim.featurized_objects.features[:, objs_valid, :]
                    objs_color = np.array(objs_color)[objs_valid]
                    num_objs = objs.shape[1]

                    if use_cache:
                        boxes = all_boxes[valid_act_id]
                        valid_act_id += 1
                    else:
                        boxes = np.zeros((1, num_objs, 5))
                        for o_id in range(num_objs):
                            mask = phyre.objects_util.featurized_objects_vector_to_raster(
                                objs[0][[o_id]])
                            mask_im = phyre.observations_to_float_rgb(mask)
                            mask_im[mask_im == 1] = 0
                            mask_im = mask_im.sum(-1) > 0

                            [h, w] = np.where(mask_im)
                            x1, x2, y1, y2 = w.min(), w.max(), h.min(), h.max()
                            x1 *= (self.input_width - 1) / (phyre.SCENE_WIDTH -
                                                            1)
                            x2 *= (self.input_width - 1) / (phyre.SCENE_WIDTH -
                                                            1)
                            y1 *= (self.input_height -
                                   1) / (phyre.SCENE_HEIGHT - 1)
                            y2 *= (self.input_height -
                                   1) / (phyre.SCENE_HEIGHT - 1)
                            boxes[0, o_id] = [o_id, x1, y1, x2, y2]
                        all_boxes.append(boxes)

                    data = image.transpose((2, 0, 1))[None, None, :]
                    data = torch.from_numpy(data.astype(np.float32))
                    rois = torch.from_numpy(boxes[..., 1:].astype(
                        np.float32))[None, :]

                    bg_image = rst_images[0].copy()
                    for fg_id in [1, 2, 3, 5]:
                        bg_image[bg_image == fg_id] = 0
                    boxes, masks = self.generate_trajs(data, rois)
                    rst_masks = np.stack([
                        self.render_mask_to_image(boxes[0, i],
                                                  masks[0, i],
                                                  images=bg_image.copy(),
                                                  color=objs_color).astype(
                                                      np.uint8)
                        for i in range(self.pred_rollout)
                    ])

                    output_dir = f'data/PHYRE_proposal/{self.proposal_dir}/{split}/'
                    output_dir = output_dir + 'pos/' if sim.status == phyre.SimulationStatus.SOLVED else output_dir + 'neg/'
                    output_dir = output_dir + f'{task.replace(":", "_")}/'
                    os.makedirs(output_dir, exist_ok=True)
                    rst_dict = {'gt_im': rst_images, 'pred_im': rst_masks}
                    hickle.dump(rst_dict,
                                f'{output_dir}/{act_id}.hkl',
                                mode='w',
                                compression='gzip')

                if not use_cache:
                    all_boxes = np.stack(all_boxes)
                    hickle.dump(all_boxes,
                                box_cache_name,
                                mode='w',
                                compression='gzip')
def evaluate_agent(task_ids, tier, solved_actions_pdf):
    cache = phyre.get_default_100k_cache(tier)
    evaluator = phyre.Evaluator(task_ids)
    simulator = phyre.initialize_simulator(task_ids, tier)
    task_data_dict = phyre.loader.load_compiled_task_dict()
    stride = 100
    eval_stride = 2
    goal = 3.0 * 60.0 / eval_stride
    empty_action = phyre.simulator.scene_if.UserInput()
    tasks_solved = 0
    alpha = 1.0
    N = 5
    max_actions = 100

    for task_index in tqdm(range(len(task_ids)), desc='Evaluate tasks'):
        task_id = task_ids[task_index]
        task_type = task_id.split(":")[0]
        task_data = task_data_dict[task_id]
        statuses = cache.load_simulation_states(task_id)
        _, _, images, _ = phyre.simulator.magic_ponies(task_data,
                                                       empty_action,
                                                       need_images=True,
                                                       stride=stride)

        evaluator.maybe_log_attempt(task_index,
                                    phyre.simulation_cache.NOT_SOLVED)

        seq_data = ImgToObj.getObjectAndGoalSequence(images)

        goal_type = ImgToObj.Layer.dynamic_goal.value
        if goal_type not in images[0]:
            goal_type = ImgToObj.Layer.static_goal.value

        tested_actions = np.array([[-1, -1, -1, 1, 0]])

        solved_task = False
        max_score = 0
        while evaluator.get_attempts_for_task(
                task_index
        ) < phyre.MAX_TEST_ATTEMPTS and not solved_task and max_score < 1.0:
            random_action = np.random.random_sample((1, 5))
            if task_type in solved_actions_pdf and np.random.random_sample(
            ) >= .25:
                random_action[0, 0:3] = np.squeeze(
                    solved_actions_pdf[task_type].resample(size=1))

            test_action_dist = np.linalg.norm(tested_actions[:, 0:3] -
                                              random_action[:, 0:3],
                                              axis=1)
            if np.any(test_action_dist <= tested_actions[:, 3]
                      ) and np.random.random_sample() >= .75:
                continue
            if ImgToObj.check_seq_action_intersect(
                    images[0], seq_data, stride, goal_type,
                    np.squeeze(random_action[0:3])):

                sim_result = simulator.simulate_action(
                    task_index,
                    np.squeeze(random_action[:, 0:3]),
                    need_images=True,
                    stride=eval_stride)
                evaluator.maybe_log_attempt(task_index, sim_result.status)
                if not sim_result.status.is_invalid():
                    score = ImgToObj.objectTouchGoalSequence(sim_result.images)
                    eval_dist = .1
                    random_action[0, 3] = eval_dist
                    random_action[0, 4] = 1.0 - np.linalg.norm(
                        seq_data['object'][-1]['centroid'] -
                        seq_data['goal'][-1]['centroid']) / 256.0
                    random_action[0, 4] += ImgToObj.objectTouchGoalSequence(
                        sim_result.images) / goal
                    if random_action[0, 4] > max_score:
                        max_score = random_action[0, 4]
                    tested_actions = np.concatenate(
                        (tested_actions, random_action), 0)
                    solved_task = sim_result.status.is_solved()
                    tasks_solved += solved_task

        if not solved_task and evaluator.get_attempts_for_task(
                task_index) < phyre.MAX_TEST_ATTEMPTS:
            tested_actions = np.delete(tested_actions, 0, 0)
            theta = tested_actions[np.argmax(tested_actions[:, 4]), 0:3]
            theta_score = tested_actions[np.argmax(tested_actions[:, 4]), 4]
            while evaluator.get_attempts_for_task(
                    task_index
            ) + 2 * N + 1 < phyre.MAX_TEST_ATTEMPTS and not solved_task:
                delta = np.random.normal(0, .2, (N, 3))
                test_actions_pos = theta + delta
                test_actions_neg = theta - delta
                old_theta = np.copy(theta)
                for i in range(N):

                    pos_score = 0
                    sim_result_pos = simulator.simulate_action(
                        task_index,
                        np.squeeze(test_actions_pos[i, :]),
                        need_images=True,
                        stride=eval_stride)
                    evaluator.maybe_log_attempt(task_index,
                                                sim_result_pos.status)
                    if not sim_result_pos.status.is_invalid():
                        pos_result_seq_data = ImgToObj.getObjectAndGoalSequence(
                            sim_result_pos.images)
                        pos_score = 1.0 - np.linalg.norm(
                            pos_result_seq_data['object'][-1]['centroid'] -
                            pos_result_seq_data['goal'][-1]['centroid']) / 256.0
                        pos_score += ImgToObj.objectTouchGoalSequence(
                            sim_result_pos.images) / goal
                        solved_task = sim_result_pos.status.is_solved()
                        tasks_solved += solved_task

                    neg_score = 0
                    sim_result_neg = simulator.simulate_action(
                        task_index,
                        np.squeeze(test_actions_neg[i, :]),
                        need_images=True,
                        stride=eval_stride)
                    evaluator.maybe_log_attempt(task_index,
                                                sim_result_neg.status)
                    if not sim_result_neg.status.is_invalid():
                        neg_result_seq_data = ImgToObj.getObjectAndGoalSequence(
                            sim_result_neg.images)
                        neg_score = 1.0 - np.linalg.norm(
                            neg_result_seq_data['object'][-1]['centroid'] -
                            neg_result_seq_data['goal'][-1]['centroid']) / 256.0
                        neg_score += ImgToObj.objectTouchGoalSequence(
                            sim_result_neg.images) / goal
                        solved_task = sim_result_neg.status.is_solved()
                        tasks_solved += solved_task

                    theta = theta + alpha / N * (pos_score -
                                                 neg_score) * delta[i, :]

                sim_result = simulator.simulate_action(task_index,
                                                       np.squeeze(theta),
                                                       need_images=True,
                                                       stride=eval_stride)
                evaluator.maybe_log_attempt(task_index, sim_result.status)
                if not sim_result.status.is_invalid():
                    result_seq_data = ImgToObj.getObjectAndGoalSequence(
                        sim_result.images)
                    score = 1.0 - np.linalg.norm(
                        result_seq_data['object'][-1]['centroid'] -
                        result_seq_data['goal'][-1]['centroid']) / 256.0
                    score += ImgToObj.objectTouchGoalSequence(
                        sim_result.images) / goal
                    solved_task = sim_result.status.is_solved()
                    tasks_solved += solved_task

    print(tasks_solved, "Tasks solved out of ", len(task_ids), "Total Tasks")
    return (evaluator.get_aucess(), tasks_solved, len(task_ids))
Exemplo n.º 22
0
cache = phyre.get_default_100k_cache(tier)
statuses = cache.load_simulation_states(task_str)

actions = cache.action_array.tolist()
valid_actions = []

print(len(actions))

for action_id, action in enumerate(actions):
    if statuses[action_id] != phyre.simulation_cache.INVALID:
        valid_actions.append(action)

actions = valid_actions
print(len(actions))

simulator = phyre.initialize_simulator([task_str], tier)

initial_scene = simulator.initial_scenes[0]
frame_data = ImgToObj.getObjectAndGoalSequence([initial_scene])
goal_type = ImgToObj.Layer.dynamic_goal.value
if goal_type not in initial_scene:
    goal_type = ImgToObj.Layer.static_goal.value

goal_data = frame_data['goal'][0]
object_data = frame_data['object'][0]

goal_bb = goal_data['bb']
goal_center = goal_data['centroid']
object_bb = object_data['bb']
object_center = object_data['centroid']
Exemplo n.º 23
0
def get_auccess(solver, tasks, solve_noise=False, save_tries=False, brute=False):
    if save_tries:
        font = ImageFont.truetype("/usr/share/fonts/truetype/ubuntu/Ubuntu-R.ttf", 10)

    eval_setup = 'ball_within_template'
    sim = phyre.initialize_simulator(tasks, 'ball')
    init_scenes = T.tensor([[cv2.resize((scene==channel).astype(float), (32,32)) for channel in range(2,7)] for scene in sim.initial_scenes]).float().flip(-2)
    eva = phyre.Evaluator(tasks)

    # Get Actions from solver:
    if brute:
        all_actions = solver.get_actions(tasks, init_scenes, brute =True)
    else:
        all_actions = solver.get_actions(tasks, init_scenes)
    #L.info(list(zip(tasks, all_actions)))
    #return 0

    # Loop through actions
    for t_idx, task in enumerate(tasks):
        # Get 100 actions from solver
        if solve_noise:
            # expects one action for task
            task_actions = [all_actions[t_idx]]
        else:
            # expects 100 actions for task
            task_actions = all_actions[t_idx]
    
        # Loop through actions
        for j, action in enumerate(task_actions):
            # Setting up visualization array
            vis_wid = 64
            vis_stack = T.zeros(6,10,vis_wid,vis_wid,3)
            vis_count = 1

            # Simulate action
            res = sim.simulate_action(t_idx, action, need_featurized_objects=False)  

            # Refining if invalid Action
            t = 0
            temp = 1
            base_action = action.copy()
            L.info(base_action, 'base action')     
            # Checking for valid action
            while res.status.is_invalid():
                t += 1
                action = base_action + (np.random.rand(3)-0.5)*0.05*temp
                L.info(action, f"potential action for task {task}")
                res = sim.simulate_action(t_idx, action,  need_featurized_objects=False)
                temp *= 1.01 if temp <5 else 1
                #assert(t>500, "too many invalid tries")
            L.info(action, 'valid action')

            # Log first Attempt
            eva.maybe_log_attempt(t_idx, res.status)
            # Visualizing first attempt
            if save_tries:
                for i in range(min(len(res.images), 10)):
                    vis_stack[0,i] = T.tensor(cv2.resize(phyre.observations_to_uint8_rgb(res.images[i]), (vis_wid,vis_wid)))

            # Collecting 100 Actions if solve noise
            warning_flag = False
            if solve_noise:
                base_action = action
                temp = 1
                error = False
                t = 0
                delta_generator = action_delta_generator()

                # Looping while less then 100 attempts
                while eva.attempts_per_task_index[t_idx]<100:
                    # Searching for new action while not solved
                    if not res.status.is_solved():
                        """ OLD APPROACH
                        action = base_action + (np.random.rand(3)-0.5)*np.array([0.3,0.05,0.05])*temp
                        temp *= 1.01 if temp <5 else 1
                        """
                        if t<1000:
                            action = base_action + delta_generator.__next__()
                            res = sim.simulate_action(t_idx, action,  need_featurized_objects=False)
                            eva.maybe_log_attempt(t_idx, res.status)
                            t += 1
                        else:
                            if not warning_flag:
                                L.info(f"WARNING can't find valid action for {task}")
                                warning_flag = True
                                error = True
                            eva.maybe_log_attempt(t_idx, phyre.SimulationStatus.NOT_SOLVED)

                    # if solved -> repeating action
                    else:
                        if not warning_flag:
                            L.info(f"{task} solved after", eva.attempts_per_task_index[t_idx])

                            # Visualization
                            if save_tries and not error:
                                for i in range(min(len(res.images), 10)):
                                    vis_stack[5,i] = T.tensor(cv2.resize(phyre.observations_to_uint8_rgb(res.images[i]), (vis_wid,vis_wid)))
                        warning_flag = True
                        eva.maybe_log_attempt(t_idx, res.status)
                    
                    # Visualization
                    if save_tries and not error and not res.status.is_invalid() and t and vis_count<5:
                        for i in range(min(len(res.images), 10)):
                            vis_stack[vis_count,i] = T.tensor(cv2.resize(phyre.observations_to_uint8_rgb(res.images[i]), (vis_wid,vis_wid)))
                        vis_count +=1

                if not warning_flag and not res.status.is_solved() and eva.attempts_per_task_index[t_idx]==100:
                    L.info(f"{task} not solved")
                vis_batch(vis_stack, f'result/solver/pyramid', f"{task}_attempts")
            # Not Solve Noise Case
            else:
                # Visualization
                if save_tries and not res.status.is_invalid() and vis_count<5:
                    for i in range(min(len(res.images), 10)):
                        vis_stack[vis_count,i] = T.tensor(cv2.resize(phyre.observations_to_uint8_rgb(res.images[i]), (vis_wid,vis_wid)))
                    vis_count +=1
                if res.status.is_solved():
                    L.info(f"{task} solved after", eva.attempts_per_task_index[t_idx])
                    vis_batch(vis_stack, f'result/solver/pyramid', f"{task}_attempts")
                    while eva.attempts_per_task_index[t_idx]<100:
                        eva.maybe_log_attempt(t_idx, res.status)
                    break
    
    return eva.get_auccess()
Exemplo n.º 24
0
#import pymunk
#from pymunk import Vec2d

import phyre

import ImgToObj

eval_setup = 'ball_cross_template'
action_tier = phyre.eval_setup_to_action_tier(eval_setup)

task_str = '00004:243'

task_data_dict = phyre.loader.load_compiled_task_dict()

simulator = phyre.initialize_simulator([task_str], action_tier)
action = [.84,.82,.41]
#action = [0.8720595836408028,0.1325951705610915,0.40200105882798676]
#action = [0,0,0]

t0 = time.time()
sim_result = simulator.simulate_action(0, action, need_images=True,stride=2)
t1 = time.time()
print(t1-t0,"Sim Time")

print(sim_result.status.is_solved())

t0 = time.time()
seq_data = ImgToObj.getObjectAndGoalSequence(sim_result.images)
t1 = time.time()
print(t1-t0,"Sequence Contour Finding Time")
Exemplo n.º 25
0
import numpy as np
import phyre
from tqdm import tqdm_notebook

import animations

random.seed(0)

# Evaluation Setup
eval_setup = 'ball_cross_template'
fold_id = 0  # For simplicity, we will just use one fold for evaluation.
train_tasks, dev_tasks, test_tasks = phyre.get_fold(eval_setup, 0)
action_tier = phyre.eval_setup_to_action_tier(eval_setup)
tasks = dev_tasks[0:1]
print((tasks))
simulator = phyre.initialize_simulator(tasks, action_tier)
actions = simulator.build_discrete_action_space(max_actions=1000)


def evaluate_random_agent(tasks, tier):
    # Create a simulator for the task and tier.
    simulator = phyre.initialize_simulator(tasks, tier)
    evaluator = phyre.Evaluator(tasks)
    assert tuple(tasks) == simulator.task_ids
    images = []
    actions = []
    for task_index in tqdm_notebook(range(len(tasks)), desc='Evaluate tasks'):
        while evaluator.get_attempts_for_task(
                task_index) < phyre.MAX_TEST_ATTEMPTS:
            # Sample a random valid action from the simulator for the given action space.
            action = simulator.sample()
Exemplo n.º 26
0
    return X * local_masks + points.reshape_as(X)


if __name__ == "__main__":
    ## TESTING HANDCRAFTED ACTION EXTRACTOR WITH GROUNDTRUTH ACTION PATH
    # SETUP of phyre simulator
    SAVE_IMAGES = False
    eval_setup = 'ball_within_template'
    fold_id = 0
    train_tasks, dev_tasks, test_tasks = phyre.get_fold(eval_setup, fold_id)
    cache = phyre.get_default_100k_cache("ball")
    actions = cache.action_array
    print(cache.task_ids)
    tasks = train_tasks  #+dev_tasks+test_tasks
    print(f"{len(tasks)} tasks")
    sim = phyre.initialize_simulator(tasks, 'ball')
    init_scenes = sim.initial_scenes
    X = T.tensor(scenes_to_channels(init_scenes)).float()
    print("Init Scenes Shape:\n", X.shape)

    # COLLECT action path
    action_paths = []
    for i, t in enumerate(tasks):
        while True:
            action = actions[cache.load_simulation_states(t) == 1]
            if len(action) == 0:
                action = [sim.sample()]
            action = random.choice(action)
            res = sim.simulate_action(i, action, stride=20)
            print(i, res.status.is_solved(), len(res.images), end='\r')
            if type(res.images) != type(None):
Exemplo n.º 27
0
def solve(tasks,
          generator,
          save_images=False,
          force_collect=False,
          static=256,
          show=False):
    # Collect Interaction Data
    data_path = './data/cgan_solver'
    if not os.path.exists(data_path + '/interactions.pickle') or force_collect:
        os.makedirs(data_path, exist_ok=True)
        wid = generator.width
        print("Collecting Data")
        collect_interactions(data_path,
                             tasks,
                             10,
                             stride=1,
                             size=(wid, wid),
                             static=static)
    with open(data_path + '/interactions.pickle', 'rb') as fs:
        X = T.tensor(pickle.load(fs), dtype=T.float)
    with open(data_path + '/info.pickle', 'rb') as fs:
        info = pickle.load(fs)
        tasklist = info['tasks']
        positions = info['pos']
        orig_actions = info['action']
    print('loaded dataset with shape:', X.shape)
    #data_set = T.utils.data.TensorDataset(X)
    #data_loader = T.utils.data.DataLoader(data_set, batch_size=BATCH_SIZE, shuffle=False)

    # Sim SETUP
    print('Succesfull collection for tasks:\n', tasklist)
    eval_setup = 'ball_within_template'
    sim = phyre.initialize_simulator(tasklist, 'ball')
    eva = phyre.Evaluator(tasklist)

    # Solve Loop
    error = np.zeros((X.shape[0], 3))
    generator.eval()
    solved, tried = 0, 0
    for i, task in enumerate(tasklist):
        # generate 'fake'
        noise = T.randn(1, generator.noise_dim)
        with T.no_grad():
            fake = generator((X[i, :generator.s_chan])[None], noise)[0, 0]
        #action = np.array(pic_to_action_vector(fake, r_fac=1.8))
        action = np.array(pic_to_action_vector(fake.numpy(), r_fac=1))
        raw_action = action.copy()

        # PROCESS ACTION
        print(action, 'raw')
        # shift by half to get relative position
        action[:2] -= 0.5
        # multiply by half because extracted scope is already half of the scene
        action[:2] *= 0.5
        # multiply by 4 because action value is always 4*diameter -> 8*radius, but scope is already halfed -> 8*0.5*radius
        action[2] *= 4
        # finetuning
        action[2] *= 1.0
        print(action, 'relativ')
        pos = positions[i]
        print(pos)
        action[:2] += pos
        print(action, 'added')
        res = sim.simulate_action(i, action, need_featurized_objects=True)

        # Noisy tries while invalid actions
        t = 0
        temp = 1
        base_action = action
        while res.status.is_invalid() and t < 200:
            t += 1
            action = base_action + (np.random.rand(3) - 0.5) * 0.01 * temp
            res = sim.simulate_action(i, action, need_featurized_objects=False)
            temp *= 1.01
        print(action, 'final action')

        # Check for and log Solves
        if not res.status.is_invalid():
            tried += 1
        if res.status.is_solved():
            solved += 1
        print(orig_actions[i], 'orig action')
        print(task, "solved", res.status.is_solved())
        error[i] = orig_actions[i] - base_action

        # Visualization
        if show:
            x, y, d = np.round(raw_action * fake.shape[0])
            y = fake.shape[0] - y
            print(x, y, d)

            def generate_crosses(points):
                xx = []
                yy = []
                for x, y in points:
                    xx.extend([x, x + 1, x - 1, x, x])
                    yy.extend([y, y, y, y + 1, y - 1])
                return xx, yy

            xx, yy = [
                x, (x + d) if (x + d) < fake.shape[0] - 1 else 62, x - d, x, x
            ], [
                y, y, y, (y + d) if (y + d) < fake.shape[0] - 1 else 62, y - d
            ]
            xx, yy = generate_crosses(zip(xx, yy))
            fake[yy, xx] = 0.5
            os.makedirs(f'result/cgan_solver/vector_extractions',
                        exist_ok=True)
            plt.imsave(f'result/cgan_solver/vector_extractions/{i}.png', fake)
            if not res.status.is_invalid():
                os.makedirs(f'result/cgan_solver/scenes', exist_ok=True)
                plt.imsave(f'result/cgan_solver/scenes/{i}.png',
                           res.images[0, ::-1])
            else:
                print("invalid")
                plt.imshow(
                    phyre.observations_to_float_rgb(sim.initial_scenes[i]))
                plt.show()

    print("solving percentage:", solved / tried, 'overall:', tried)
    print("mean x error:", np.mean(error[:, 0]), 'mean x abs error:',
          np.mean(np.abs(error[:, 0])))
    print("mean y error:", np.mean(error[:, 1]), 'mean y abs error:',
          np.mean(np.abs(error[:, 1])))
    print("mean r error:", np.mean(error[:, 2]), 'mean r abs error:',
          np.mean(np.abs(error[:, 2])))
Exemplo n.º 28
0
    def real_eval(cls, cache, model, trainer, actions_per_task, task_ids, tier,
                  max_attempts_per_task, cfg):
        # Parameters
        if cfg.eval.batch_size:
            eval_batch_size = cfg.eval.batch_size
        else:
            eval_batch_size = cfg.train.batch_size * cfg.eval.bs_multiplier
            # Since scaling the eval batch size by this, should scale down the
            # workers for training, since the memory might blow up
            cfg.eval.data_loader.num_workers = max(
                16,
                cfg.train.data_loader.num_workers // cfg.eval.bs_multiplier)
            logging.warning('Scaling down eval workers to %d',
                            cfg.eval.data_loader.num_workers)
        assert eval_batch_size % cfg.num_gpus == 0, 'Otherwise will error'

        model.cuda()
        # Not passing in the drop_objs here, since this simulator is only
        # used for evaluation
        simulator = phyre.initialize_simulator(task_ids, tier)
        assert tuple(task_ids) == simulator.task_ids

        # New evaluation code only does 1 prediction no matter length of rollout
        evaluator = EvaluatorWrapper(simulator, task_ids, 1,
                                     max_attempts_per_task)
        if cfg.eval.store_vis:
            # Subselect actions that are diverse (some solve, others don't)
            # And keep a small subset of actions, not too many
            # eval_batch_size = 4  # What I typically visualize for
            # store_vis_nsamples = max(cfg.eval.store_vis_nsamples,
            #                          eval_batch_size)
            # Make this consistent, to keep numbers always consistent
            store_vis_nsamples = cfg.eval.store_vis_nsamples
            actions_override = None
            if cfg.eval.store_vis_actions is not None:
                actions_override = np.array(
                    cls.read_actions_override(cfg.eval.store_vis_actions))
                eval_batch_size = len(actions_override)
            task_indices = []
            actions = []
            # Running separately to be able to match the set that was used
            # in before multi-worker testing
            for task_index, task_id in enumerate(
                    tqdm.tqdm(task_ids, 'gen-ing task IDs for vis')):
                if actions_override is not None:
                    this_actions = actions_override
                else:
                    _, _, this_actions, _, _ = (
                        neural_agent.create_balanced_eval_set(
                            cache, [task_id], store_vis_nsamples, cfg.tier))
                actions.append(this_actions)
                task_indices += [task_index] * len(this_actions)
            task_indices = np.array(task_indices)
            actions = np.concatenate(actions, axis=0)
        else:
            task_indices = np.repeat(np.arange(len(task_ids)),
                                     len(actions_per_task))
            actions = np.concatenate([actions_per_task] * len(task_ids),
                                     axis=0)
        logging.info('Ranking %d actions and simulating top %d',
                     len(actions) // len(task_ids), max_attempts_per_task)
        assert len(task_indices) == len(actions)
        if cfg.train.data_loader.fwd_model.use_obj_fwd_model:
            obj_fwd_model = obj_fwd_agent.ObjTrainer.gen_model(cfg)
            if cfg.train.data_loader.fwd_model.weights is not None:
                obj_fwd_model = trainer.load_agent_from_folder(
                    obj_fwd_model, cfg.train.data_loader.fwd_model.weights)
            obj_fwd_model = obj_fwd_model.module.cpu()
        else:
            obj_fwd_model = None
        dataset = PhyreDataset(
            tier,
            task_ids,
            task_indices,
            # This info not needed for test case
            torch.LongTensor([0] * len(task_indices)),
            actions,
            cfg.simulator,
            mode='test',
            balance_classes=False,
            hard_negatives=False,
            init_clip_ratio_to_sim=cfg.eval.init_clip_ratio_to_sim,
            init_frames_to_sim=cfg.eval.init_frames_to_sim,
            frames_per_clip=cfg.eval.frames_per_clip,
            n_hist_frames=cfg.eval.n_hist_frames,
            drop_objs=cfg.eval.drop_objs,
            obj_fwd_model=obj_fwd_model,
        )
        # res_actions may be different from actions since the last batch
        # might be smaller than the others, and we might end up dropping it
        res_scores, res_actions, res_indices, res_pixel_accs = (
            trainer.eval_actions(model, dataset, len(actions), eval_batch_size,
                                 cfg))
        for task_index, _ in enumerate(task_ids):
            mask = (res_indices == task_index)
            # When store_vis, the actions are selected differently, so this
            # assertion would not hold
            assert (cfg.eval.store_vis
                    or (np.sum(mask) == (len(actions) // len(task_ids))))
            if np.sum(mask) == 0:
                logging.warning('Missing task %s from evaluation!',
                                task_ids[task_index])
                continue
            # statuses = cache.load_simulation_states(task_id)
            evaluator.wrapper_add_scores(task_index, res_scores[:, mask],
                                         res_actions[mask])
            # # Order of descending scores.
            # action_order = np.argsort(-scores)

        cls.print_pixel_accs_summary([res_pixel_accs],
                                     cfg.phyre_movable_channels)
        return evaluator
Exemplo n.º 29
0
def solve(model, model2, save_images=False):
    tasks = [
        '00000:001', '00000:002', '00000:003', '00000:004', '00000:005',
        '00001:001', '00001:002', '00001:003', '00001:004', '00001:005',
        '00002:007', '00002:011', '00002:015', '00002:017', '00002:023',
        '00003:000', '00003:001', '00003:002', '00003:003', '00003:004',
        '00004:063', '00004:071', '00004:092', '00004:094', '00004:095'
    ]
    tasks = json.load(open("most_tasks.txt", 'r'))

    eval_setup = 'ball_within_template'
    fold_id = 0  # For simplicity, we will just use one fold for evaluation.
    train_tasks, dev_tasks, test_tasks = phyre.get_fold(eval_setup, fold_id)
    print('Size of resulting splits:\n train:', len(train_tasks), '\n dev:',
          len(dev_tasks), '\n test:', len(test_tasks))

    tasks = train_tasks[:]
    print("tasks:\n", tasks)
    sim = phyre.initialize_simulator(tasks, 'ball')
    init_scenes = sim.initial_scenes
    X = T.tensor(format(init_scenes)).float()
    print("Init Scenes Shape:\n", X.shape)

    base_path = []
    action_path = []
    for i, t in enumerate(tasks):
        while True:
            action = sim.sample(i)
            action[2] = 0.01
            res = sim.simulate_action(i, action, stride=20)
            if type(res.images) != type(None):
                base_path.append(rollouts_to_channel([res.images], 2))
                action_path.append(rollouts_to_channel([res.images], 1))
                break
    base_path = T.tensor(np.concatenate(base_path)).float()
    action_path = T.tensor(np.concatenate(base_path)).float()
    with T.no_grad():
        Z = model(X)
        A = model2(T.cat((X[:, 1:], base_path[:, None], Z), dim=1))
    #B = model3(T.cat((X[:,1:], Y[:,None,2], Z, A), dim=1))
    #B = extract_action(A, inspect=-2 if save_images else -1)
    B = extract_action(action_path[:, None], inspect=-2 if save_images else -1)

    # Saving Images:
    if save_images:
        for inspect in range(len(X)):
            plt.imsave(
                f"result/flownet/{inspect}_init.png",
                T.cat(tuple(
                    T.cat((sub, T.ones(32, 1) * 0.5), dim=1)
                    for sub in X[inspect]),
                      dim=1))
            plt.imsave(f"result/flownet/{inspect}_base.png",
                       base_path[inspect])
            plt.imsave(f"result/flownet/{inspect}_target.png", Z[inspect, 0])
            #plt.imsave(f"result/flownet/{inspect}_init_scene.png", np.flip(batch[inspect][0], axis=0))
            plt.imsave(f"result/flownet/{inspect}_action.png", A[inspect, 0])
            plt.imsave(f"result/flownet/{inspect}_selection.png", B[inspect,
                                                                    0])
    gen_actions = []
    for b in B[:, 0]:
        gen_actions.append(pic_to_values(b))
    print(gen_actions)

    # Feed actions into simulator
    eva = phyre.Evaluator(tasks)
    solved, valid, comb = dict(), dict(), dict()
    for i, t in enumerate(tasks):
        if not (t[:5] in comb):
            comb[t[:5]] = 0
            valid[t[:5]] = 0
            solved[t[:5]] = 0

        base_action = gen_actions[i]
        # Random Agent Intercept:
        #action = sim.sample()
        res = sim.simulate_action(i, base_action)
        tries = 0
        alpha = 1
        # 100 Tries Max:
        while eva.get_attempts_for_task(i) < 100:
            if not res.status.is_solved():
                action = np.array(base_action) + np.random.randn(3) * np.array(
                    [0.1, 0.1, 0.1]) * alpha
                res = sim.simulate_action(i, action)

                subtries = 0
                while subtries < 100 and res.status.is_invalid():
                    subtries += 1
                    action_var = np.array(action) + np.random.randn(
                        3) * np.array([0.05, 0.05, 0.05]) * alpha
                    res = sim.simulate_action(i, action_var)

                eva.maybe_log_attempt(i, res.status)
                alpha *= 1.01
            else:
                eva.maybe_log_attempt(i, res.status)
            tries += 1

        if save_images:
            try:
                for k, img in enumerate(res.images):
                    plt.imsave(f"result/flownet/{i}_{k}.png",
                               np.flip(img, axis=0))
                    pass
            except Exception:
                pass
        #print(i, t, res.status.is_solved(), not res.status.is_invalid())
        comb[t[:5]] = comb[t[:5]] + 1
        if not res.status.is_invalid():
            valid[t[:5]] = valid[t[:5]] + 1
        if res.status.is_solved():
            solved[t[:5]] = solved[t[:5]] + 1

    # Prepare Plotting
    print(eva.compute_all_metrics())
    print(eva.get_auccess())
    spacing = [1, 2, 3, 4]
    fig, ax = plt.subplots(5, 5, sharey=True, sharex=True)
    for i, t in enumerate(comb):
        ax[i // 5, i % 5].bar(spacing, [
            solved[t[:5]] /
            (valid[t[:5]] if valid[t[:5]] else 1), solved[t[:5]] / comb[t[:5]],
            valid[t[:5]] / comb[t[:5]], comb[t[:5]] / 100
        ])
        ax[i // 5, i % 5].set_xlabel(t[:5])
    plt.show()
Exemplo n.º 30
0
        distance_map = 255 * distance_map / (img.shape[0] * 2)

    distance_map[distance_map > 255.] = 255.
    distance_map = 255. - distance_map
    return distance_map


# improve/debug time-step selection for injection
# implement 5 random positions at the goal object
# take into account grey obstacles
# run the benchmark with stats on compute on GPU cluster

if __name__ == "__main__":
    x = 42
    y = 42
    sim = phyre.initialize_simulator(['00002:017'], "ball")
    # img = cv2.imread('maze.png')  # read image
    init_scene = sim.initial_scenes[0]
    img = phyre.observations_to_float_rgb(init_scene)  # read image
    img = cv2.resize(img, (64, 64))
    print(img)
    cv2.imwrite('00002_017_scene.png', img * 255)
    target = np.flip((init_scene == 4), axis=0).astype(float)
    target = cv2.resize(target, (64, 64))
    # cv2.imwrite('maze-initial.png', img)
    distance_map = find_distance_map_obj(img, target)
    #distance_map[y-1, x] = 0.
    #distance_map[y, x] = 0.
    #distance_map[y+1, x] = 0.
    #distance_map[y, x-1] = 0.
    #distance_map[y, x+1] = 0.