Exemplo n.º 1
0
    def _simplify(self):
        if not self:
            return

        coeffs = self._numerator.coefficients + self._denominator.coefficients
        if len(coeffs) > 1:
            gcd_ = gcd(*coeffs)
            self._numerator /= gcd_
            self._denominator /= gcd_

        if not self._numerator % self._denominator:
            num = self._numerator // self._denominator
            if num.is_constant() and num:
                num = num.coefficients[0]
                self._numerator = Polynomial.from_iterable([[num.numerator,
                                                             {}]])
                self._denominator = Polynomial.from_iterable([[num.denominator,
                                                               {}]])
            else:
                self._numerator = num
                self._denominator = Polynomial("1")
        elif not self._denominator % self._numerator and\
                                  not self._numerator.is_constant():
            den = self._denominator // self._numerator
            self._denominator = den
            self._numerator = Polynomial("1")
Exemplo n.º 2
0
    def test_gcd(self):
        self.assertEqual(gcd(0, 0), 1)
        self.assertEqual(gcd(5, 0), 5)
        self.assertEqual(gcd(0, 5), 5)
        self.assertEqual(gcd(5, 5), 5)
        self.assertEqual(gcd(5, 1), 1)
        self.assertEqual(gcd(5, 0), 5)
        self.assertEqual(gcd(33, 121), 11)
        self.assertEqual(gcd(256, 160), 32)
        self.assertEqual(gcd(256, -160), 32)
        self.assertEqual(gcd(-256, 160), 32)
        self.assertEqual(gcd(-256, -160), 32)
        self.assertEqual(gcd(Polynomial("x2 - 2x + 1"),
                             Polynomial("x2 - 3x + 2")), Polynomial("x - 1"))
        self.assertEqual(gcd(Polynomial("120x2y4z7t"), Polynomial("24xy5zhg")),
                         Polynomial("24xy4z"))
        self.assertEqual(gcd(4, Polynomial("2x2 - 2x + 2")), 2)
        self.assertEqual(gcd(Polynomial("4"), Polynomial("2x2 - 2x + 2")), 2)
        self.assertEqual(gcd(fractions.Fraction(3, 2),
                             fractions.Fraction(21, 6)),
                         fractions.Fraction(1, 2))
        self.assertEqual(gcd(1.2, 4.6), fractions.Fraction(1, 5))
        self.assertEqual(gcd(1j, 2), 1)
        self.assertEqual(gcd(fractions.Fraction(4, 2), 6), 2)
        self.assertEqual(gcd(2.0, 6), 2)
        self.assertEqual(gcd(-2.0, 6), 2)
        self.assertEqual(gcd(fractions.Fraction(4),
                             Polynomial("2x2 - 2x + 2")), 2)
        self.assertEqual(gcd(8j, 12j), 4j)
        self.assertEqual(gcd(8j, 0), 8j)
        self.assertEqual(gcd(Polynomial("x - 2"), Polynomial("x")),
                         Polynomial("1"))
        self.assertEqual(gcd(30, 24, 54, 36), 6)
        self.assertEqual(gcd(*(2 * x for x in range_(10))), 2)
        self.assertEqual(gcd(Polynomial("x - 2") * "x - 1",
                             Polynomial("x - 1") ** 2,
                             Polynomial("y") * "x - 1",
                             Polynomial("x - 1")), "x - 1")
        #self.assertEqual(gcd(Polynomial("2x - 4") * "x - 1",
        #                     Polynomial("x - 1") ** 2 * 6,
        #                     Polynomial("4y") * "x",
        #                     Polynomial("2x - 2"),
        #                     -2,
        #                     fractions.Fraction(16, 4),
        #                     8.0,
        #                     16), 2)

        self.assertRaises(TypeError, gcd, "3", 6)
        self.assertRaises(TypeError, gcd, 3, "6")
        self.assertRaises(TypeError, gcd, [3], "6")
        self.assertRaises(TypeError, gcd, 3, 6, [])
        self.assertRaises(TypeError, gcd, 3, 6, 9, 18, "")

        self.assertRaises(TypeError, gcd, 3)
        self.assertRaises(TypeError, gcd)
        self.assertRaises(TypeError, gcd, 3, 6, pippo=3)
Exemplo n.º 3
0
 def greatest_common_divisor(self):
     if not self:
         return Polynomial("1")
     elif len(self) == 1:
         return Polynomial.from_iterable([self._monomials[0]])
     return gcd(*(Polynomial.from_iterable([m]) for m in self._monomials))