sys.path.append('../../plotting_scripts') from jupyterplots import JupyterPlots fig_x, fig_y = JupyterPlots() prefix = 'data/' roundoff = 5e-6 fp = int(sys.argv[1]) fdump = prefix + f'dump_{fp}.lammpstrj' if os.path.isfile(fdump + '.pkl'): dumpdata = load_obj(fdump, pstatus=True) else: duf = DumpFile(fdump, voronoi_flag=False, cg_flag=False) dumpdata = duf.read_dump() save_obj(dumpdata, fdump, pstatus=True) fig, axarr = plt.subplots(6, sharex=True, figsize=[fig_x, fig_y * 6]) N = len(dumpdata) ncount = N atom_num = 2 fxs = np.empty([ncount], float) fys = np.empty([ncount], float) xs = np.empty([ncount], float) ys = np.empty([ncount], float)
for i in range(Nsamples): fname = 'corr_files/' fname += f'g_{fp}_{rho}_{i}.rdf' data = np.loadtxt(fname) print(i) rbins = data[:, 1] gs[:, i] = data[:, 2] gcorrs = np.mean(gs, axis=1) gstd = np.std(gs, axis=1) / np.sqrt(Nsamples) prefix = '../../2020_03_19/raw_data_processing/pickled_data/' dc_name = prefix + f'ret_o_{fp}_{rho}' ret_o = load_obj(dc_name) gmatrix = ret_o['sum_g'] N_ft_samples = ret_o['g_cnt'] rs = np.array(gmatrix[:, 0] / N_ft_samples).flatten() g_fts = np.array(gmatrix[:, 1] / N_ft_samples).flatten() fig, axarr = plt.subplots(2) axarr[0].plot(rbins, gcorrs, 'o-') #yerr=gstd,fmt='o-') axarr[0].plot(rs, g_fts, 'ko-') axarr[0].plot(rbins, savgol_filter(gcorrs, 9, 2), 'r-') print(rbins[110]) axarr[1].hist(gs[130, :], bins=5)
prefix = 'data/' fps = np.array([0, 1, 100], int) rhos = np.array([0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6], float) tcut = 1000000 fig, ax = plt.subplots(figsize=[fig_x, fig_y]) for i, fp in enumerate(fps): pkl_name = prefix + f'P_stuff_for_fp_equals_{fp}' if os.path.isfile(pkl_name + '.pkl'): Ps, Perrs = load_obj(pkl_name, pstatus=True) else: Ps = np.empty([len(rhos)], float) Perrs = np.empty([len(rhos)], float) for j, rho in enumerate(rhos): flog = prefix + f'log_{fp}_{rho}.lammps.log' ll = LogLoader(flog, remove_chunk=0, merge_data=True) ts = ll.data['Step'] Press = ll.data['c_press'] P_cuts = Press[ts > tcut] Ps[j] = np.mean(P_cuts)
fig,axarr = plt.subplots(2,sharex=True,figsize=[fig_x,2*fig_y]) rhos_naive = np.array([0.05,0.1,0.2,0.3,0.4,0.5,0.6],float) mask_naive = (np.isin(rhos_naive,rhos_winkler)) print(mask_naive) for i,fp in enumerate(fps): pkl_press_naive = prefix1 + f'P_stuff_for_fp_equals_{fp}' pkl_diff_naive = prefix1 + f'Deff_stuff_for_fp_equals_{fp}' pkl_press_winkler = prefix2 + f'P_stuff_for_fp_equals_{fp}' pkl_diff_winkler = prefix2 + f'Deff_stuff_for_fp_equals_{fp}' Ps_naive,Perrs_naive = load_obj(pkl_press_naive,pstatus=True) Ps_winkler,Perrs_winkler = load_obj(pkl_press_winkler,pstatus=True) Deffs_naive,Derrs_naive = load_obj(pkl_diff_naive,pstatus=True) Deffs_winkler,Derrs_winkler = load_obj(pkl_diff_winkler,pstatus=True) Ps_winkler += swim_add(fp,rhos_winkler,2) Ps_naive = Ps_naive[mask_naive] Deffs_naive = Deffs_naive[mask_naive] Derrs_naive = Derrs_naive[mask_naive] print(Deffs_naive) print(Deffs_winkler)