Exemplo n.º 1
0
def test():
    # simulated image
    mat_contents = sio.loadmat('data/sim_2dmri.mat')
    im = mat_contents["sim_2dmri"]
    #im = spimg.zoom(xorig, 0.4)
    #plotim2(im)

    #dwt = opts.DWTnd( wavelet = 'haar', level = 2, axes = (0, 1))
    dwt = opts.DWT2d(wavelet='haar', level=4)
    nx, ny = im.shape

    mask = ut.mask2d(nx, ny, center_r=15)
    FTm = opts.FFT2d_kmask(mask)
    ut.plotim1(np.absolute(mask))  #plot the mask

    # undersampling in k-space
    b = FTm.forward(im)
    scaling = ut.optscaling(FTm, b)
    b = b / scaling
    ut.plotim1(np.absolute(FTm.backward(b)))  #undersampled imag

    #do soft thresholding
    Nite = 100  #number of iterations
    step = 1  #step size
    th = 1.5  # theshold level
    #xopt = solvers.IST_2(FTm.forward, FTm.backward, b, Nite, step,th)
    xopt = solvers.IST_3(FTm.forward, FTm.backward, dwt.backward, dwt.forward,
                         b, Nite, step, th)
    ut.plotim1(np.absolute(xopt))
Exemplo n.º 2
0
def wavel1_data(nx, ny, test_data):
    dwt = opts.DWT2d(wavelet='haar', level=4)
    # tv regularization
    tmp = np.zeros((nx, ny, test_data.shape[-1]), dtype=test_data.dtype)
    tmp = pf.prox_l1_Tf_soft_thresh2( dwt.backward, dwt.forward, \
        test_data.reshape((nx,ny,test_data.shape[-1]),order='F'), 0.2)
    test_data = tmp.reshape((nx * ny, test_data.shape[-1]), order='F')
    return test_data
Exemplo n.º 3
0
def wavel1_par(nx, ny, test_outy):
    dwt = opts.DWT2d(wavelet='haar', level=4)
    # tv regularization
    tmp = np.zeros((nx, ny, 4), dtype=test_outy.dtype)
    for i in range(4):
        tmp[:,:,i] = pf.prox_l1_Tf_soft_thresh2( dwt.backward, dwt.forward, \
            test_outy.reshape((nx,ny,4),order='F')[:,:,i], 0.1)
        #ut.plotim1((tmp[:,:,i]))
    test_outy = tmp.reshape((nx * ny, 4), order='F')
    return test_outy
Exemplo n.º 4
0
def test():
    # simulated image
    mat_contents = sio.loadmat('data/kellman_data/PKdata3.mat',
                               struct_as_record=False,
                               squeeze_me=True)
    xdata = mat_contents["data"]
    im = xdata.images
    field = xdata.FieldStrength
    b0_gain = 100.0
    TE = b0_gain * xdata.TE
    fat_freq_arr = (1.0 / b0_gain) * 42.58 * field * np.array(
        [-3.80, -3.40, -2.60, -1.94, -0.39, 0.60])
    fat_rel_amp = np.array([0.087, 0.693, 0.128, 0.004, 0.039, 0.048])

    #ut.plotim3(np.real(im[:,:,:]))
    nx, ny, nte = im.shape
    #undersampling
    mask = ut.mask3d(nx, ny, nte, [15, 15, 0], 0.8)
    #FTm   = opts.FFT2d_kmask(mask)
    FTm = opts.FFTW2d_kmask(mask)
    #FTm   = opts.FFT2d()
    b = FTm.forward(im)
    scaling = ut.optscaling(FTm, b)
    b = b / scaling

    #ut.plotim3(mask)
    #ut.plotim3(np.absolute(FTm.backward(b))) #undersampled imag
    #parameters
    xpar = np.zeros((nx, ny, 3), np.complex128)
    #xpar[:,:,0]  = 10*np.ones((nx,ny))
    #ut.plotim3(np.absolute(xpar),[3,-1])
    # IDEAL and FFT jointly
    IDEAL = idealc.IDEAL_opt2(TE, fat_freq_arr,
                              fat_rel_amp)  #fat_freq_arr , fat_rel_amp
    Aideal_ftm = opts.joint2operators(IDEAL, FTm)  #(FTm,IDEAL)#
    IDEAL.set_x(xpar)  #this set the size of data
    dwt = opts.DWT2d(wavelet='haar', level=4)

    #do tv cs mri recon
    Nite = 10  #number of iterations
    step = 1  #step size
    l1_r = 0.001
    tv_r = 0.0001  # regularization term for tv term
    rho = 1.0

    xpar = ADMM_l2Agaussnewton_l1Tfx(IDEAL, FTm, dwt, b, Nite, step, l1_r, rho)
    #xpar = ADMM_l2Aguassnewton_tvx(IDEAL, FTm, b, Nite, step, tv_r, rho )
    #xpar = ADMM_l2Agaussnewton_l1Tfx_tvx( IDEAL, FTm, dwt, b, Nite, step, l1_r, tv_r, rho)

    ut.plotim3(np.absolute(xpar)[..., 0:2], bar=1)
    ut.plotim3(b0_gain * np.real(xpar)[..., 2], bar=1)
    ut.plotim3(b0_gain * 2.0 * np.pi * np.imag(xpar)[..., 2], bar=1)
Exemplo n.º 5
0
def test():
    # simulated image
    mat_contents = sio.loadmat('data/brain_32ch.mat');
    x            = mat_contents["DATA"] 
    #mask         = mat_contents["mask_randm_x3"].astype(np.float)    
    nx,ny,nc     = x.shape
    #crop k-space
    xcrop        = ut.crop2d( x, 16 )  
    if 0:#do espirit 
        Vim, sim     = espirit_2d(xcrop, x.shape,\
         nsingularv = 150, hkwin_shape = (16,16,16), pad_before_espirit = 0, pad_fact = 2 )
        #coil map
        ut.plotim3(np.absolute(Vim),[4,-1],bar = 1)
        ut.plotim1(np.absolute(sim),bar = 1)
        #create espirit operator
        esp = opts.espirit(Vim)
        esp.save('../save_data/espirit_data_2d.mat')
        #esp.save('/working/larson/UTE_GRE_shuffling_recon/python_test/save_data/espirit_data_2d.mat')        
    else:
        esp = opts.espirit()
        esp.restore('../save_data/espirit_data_2d.mat')
        #esp.restore('/working/larson/UTE_GRE_shuffling_recon/python_test/save_data/espirit_data_2d.mat') 

    #create mask
    mask = ut.mask2d( nx, ny, center_r = 15, undersampling = 0.25 )
    #FTm  = opts.FFT2d_kmask(mask)
    FTm  = opts.FFTW2d_kmask(mask)
    #ut.plotim1(np.absolute(mask))#plot the mask
    Aopt = opts.joint2operators(esp, FTm)
    #create image
    im   = FTm.backward(x)
    #ut.plotim3(np.absolute(im[:,:,:]))
    #wavelet operator
    dwt  = opts.DWT2d(wavelet = 'haar', level=4)
    # undersampling in k-space
    b = FTm.forward(im)
    scaling = ut.optscaling(FTm,b)
    b = b/scaling
    ut.plotim1(np.absolute(Aopt.backward(b))) #undersampled imag

    #do cs mri recon
    Nite = 40 #number of iterations
    step = 0.5 #step size
    tv_r = 0.002 # regularization term for tv term
    rho  = 1.0
    #th   = 1 #threshold
    #xopt = solvers.IST_2(FTm.forward,FTm.backward,b, Nite, step,th) #soft thresholding
    xopt = solvers.ADMM_l2Afxnb_tvx( Aopt.forward, Aopt.backward, b, Nite, step, tv_r, rho)
    #xopt = solvers.ADMM_l2Afxnb_l1x_2( FTm.forward, FTm.backward, b, Nite, step, 100, 1 )

    ut.plotim3(np.absolute(xopt))
Exemplo n.º 6
0
def test():
    ft = opts.FFT2d()
    mat_contents = sio.loadmat(
        '/working/larson/UTE_GRE_shuffling_recon/20170718_voluteer_ir_fulksp/exp2_ir_fulksp/rawdata.mat'
    )
    x = mat_contents["da"].squeeze(axis=0).squeeze(axis=3)
    mask = mat_contents["mask"].squeeze(axis=0).squeeze(axis=3)
    Vim = mat_contents["calib"][40, ...]
    #ut.plotim3(np.absolute(x[:,:,:,0]))
    im = ft.backward(x)
    ut.plotim3(np.absolute(im[:, :, im.shape[2] // 2, :]))
    #get shape
    nx, ny, nc, nd = x.shape
    #create espirit operator
    esp = opts.espirit(Vim)

    #FTm  = opts.FFTnd_kmask(mask)
    FTm = opts.FFTW2d_kmask(mask, threads=5)
    #ut.plotim1(np.absolute(mask))#plot the mask
    Aopt = opts.joint2operators(esp, FTm)
    #create image
    im = FTm.backward(x)
    #ut.plotim3(np.absolute(im[:,:,:]))
    #wavelet operator
    dwt = opts.DWT2d(wavelet='haar', level=4)
    # undersampling in k-space
    b = FTm.forward(im)
    scaling = ut.optscaling(FTm, b)
    b = b / scaling
    #ut.plotim3(np.absolute(Aopt.backward(b))) #undersampled imag

    #do tv cs mri recon
    #Nite = 20 #number of iterations
    #step = 0.5 #step size
    #tv_r = 0.002 # regularization term for tv term
    #rho  = 1.0
    #xopt = solvers.ADMM_l2Afxnb_tvx( Aopt.forward, Aopt.backward, b, Nite, step, tv_r, rho )

    #do wavelet l1 soft thresholding
    Nite = 50  #number of iterations
    step = 1  #step size
    th = 0.1  # theshold level
    xopt = solvers.FIST_3(Aopt.forward, Aopt.backward, dwt.backward,
                          dwt.forward, b, Nite, step, th)

    ut.plotim3(np.absolute(xopt[:, :, :]))
Exemplo n.º 7
0
def test():
    # simulated image
    mat_contents = sio.loadmat('data/brain_32ch.mat')
    x = mat_contents["DATA"]
    #mask         = mat_contents["mask_randm_x3"].astype(np.float)
    nx, ny, nc = x.shape
    #crop k-space
    xcrop = ut.crop2d(x, 16)
    if 0:  #do espirit
        Vim, sim     = espirit_2d(xcrop, x.shape,\
         nsingularv = 150, hkwin_shape = (16,16,16), pad_before_espirit = 0, pad_fact = 2 )
        #coil map
        ut.plotim3(np.absolute(Vim), [4, -1], bar=1)
        ut.plotim1(np.absolute(sim), bar=1)
        #create espirit operator
        esp = opts.espirit(Vim)
        esp.save('../save_data/espirit_data_2d.mat')
    else:
        esp = opts.espirit()
        esp.restore('../save_data/espirit_data_2d.mat')
    #create mask
    mask = ut.mask2d(nx, ny, center_r=15, undersampling=0.25)
    FTm = opts.FFT2d_kmask(mask)
    ut.plotim1(np.absolute(mask))  #plot the mask
    Aopt = opts.joint2operators(esp, FTm)
    #create image
    im = FTm.backward(x)
    #ut.plotim3(np.absolute(im[:,:,:]))
    #wavelet operator
    dwt = opts.DWT2d(wavelet='haar', level=4)
    # undersampling in k-space
    b = FTm.forward(im)
    scaling = ut.optscaling(FTm, b)
    b = b / scaling
    ut.plotim1(np.absolute(Aopt.backward(b)))  #undersampled imag
    #do soft thresholding
    Nite = 50  #number of iterations
    step = 1  #step size
    th = 0.1  # theshold level
    #xopt = solvers.IST_2(FTm.forward, FTm.backward, b, Nite, step,th)
    xopt = solvers.FIST_3(Aopt.forward, Aopt.backward, dwt.backward,
                          dwt.forward, b, Nite, step, th)
    ut.plotim3(np.absolute(xopt))
Exemplo n.º 8
0
def ReconstructADMM_2D(fullysampled_kdata,
                       mask,
                       iterations=10,
                       step=0.05,
                       tv_r=0.005,
                       rho=1.0,
                       is_show=True):
    fullysampled_kdata = fullysampled_kdata[..., np.newaxis]
    FTm = opts.FFTW2d_kmask(mask)

    esp = opts.espirit(sensitivity=np.ones_like(fullysampled_kdata))
    Aopt = opts.joint2operators(esp, FTm)

    im = FTm.backward(fullysampled_kdata)
    dwt = opts.DWT2d(wavelet='haar', level=4)

    # undersampling in k-space
    b = FTm.forward(im)
    scaling = ut.optscaling(FTm, b)
    b = b / scaling

    # do cs mri recon
    Nite = iterations  # number of iterations
    step = step  # step size
    tv_r = tv_r  # regularization term for tv term
    rho = rho
    # th = 1  # threshold

    # xopt = solvers.IST_2(FTm.forward,FTm.backward,b, Nite, step,th) #soft thresholding
    xopt = solvers.ADMM_l2Afxnb_tvx(Aopt.forward,
                                    Aopt.backward,
                                    b,
                                    Nite,
                                    step,
                                    tv_r,
                                    rho,
                                    is_show=is_show)
    # xopt = solvers.ADMM_l2Afxnb_l1x_2( FTm.forward, FTm.backward, b, Nite, step, 100, 1 )

    # ut.plotim3(np.absolute(xopt))
    return xopt
Exemplo n.º 9
0
def test():
    # simulated image
    mat_contents = sio.loadmat(pathdat, struct_as_record=False, squeeze_me=True)
    xdata        = mat_contents["data"] 
    im           = xdata.images
    field        = xdata.FieldStrength
    b0_gain      = 100.0
    TE           = b0_gain * xdata.TE
    fat_freq_arr = (1.0/b0_gain) * 42.58 * field * np.array([-3.80, -3.40, -2.60, -1.94, -0.39, 0.60])
    fat_rel_amp  = np.array([0.087, 0.693, 0.128, 0.004, 0.039, 0.048])
 
    ut.plotim3(np.real(im[:,:,:]))
    nx,ny,nte  = im.shape
    #undersampling
    mask       = ut.mask3d( nx, ny, nte, [15,15,0], 0.8)
    #FTm   = opts.FFT2d_kmask(mask)
    #FTm        = opts.FFTW2d_kmask(mask)
    FTm   = opts.FFT2d()
    b          = FTm.forward(im)
    scaling    = ut.optscaling(FTm,b)
    b          = b/scaling

    #ut.plotim3(mask)
    ut.plotim3(np.absolute(FTm.backward(b))) #undersampled imag
    #parameters
    xpar        = np.zeros((nx,ny,3), np.complex128)
    #xpar[:,:,0]  = 10*np.ones((nx,ny))
    #ut.plotim3(np.absolute(xpar),[3,-1])
    # IDEAL and FFT jointly
    IDEAL       = idealc.IDEAL_opt2(TE, fat_freq_arr , fat_rel_amp )#fat_freq_arr , fat_rel_amp
    Aideal_ftm  = opts.joint2operators(IDEAL, FTm)#(FTm,IDEAL)#
    IDEAL.set_x(xpar) #should update in each gauss newton iteration
    residual    = IDEAL.residual(b, FTm)
    #ut.plotim3(np.absolute(FTm.backward(residual)))
    # wavelet and x+d_x
    addx_water  = idealc.x_add_dx()
    addx_fat    = idealc.x_add_dx()
    addx_df     = idealc.x_add_dx()
    #addx        = idealc.x_add_dx()
    #addx.set_w([1, 1, 0.0001])
    addx_water.set_x(xpar[...,0]) #should update in each gauss newton iteration
    addx_fat.set_x  (xpar[...,1])
    addx_df.set_x   (xpar[...,2])
    dwt         = opts.DWT2d(wavelet = 'haar', level=4)
    tvop        = tvopc.TV2d()
    Adwt_addx_w = opts.joint2operators(dwt, addx_water)   
    Adwt_addx_f = opts.joint2operators(dwt, addx_fat)
    Adwt_addx_d = opts.joint2operators(tvop, addx_df)   
    #Adwt_addx   = opts.joint2operators(dwt, addx)

    #CGD
    Nite  = 80
    l1_r1 = 0.01
    l1_r2 = 0.01
    def f(xi):
        #return np.linalg.norm(Aideal_ftm.forward(xi)-residual)
        return alg.obj_fidelity(Aideal_ftm, xi, residual) \
        + l1_r1 * alg.obj_sparsity(Adwt_addx_w, xi[...,0])\
        + l1_r1 * alg.obj_sparsity(Adwt_addx_f, xi[...,1])\
        + l1_r2 * alg.obj_sparsity(Adwt_addx_d, xi[...,2])

    def df(xi):
        #return 2*Aideal_ftm.backward(Aideal_ftm.forward(xi)-residual)
        gradall = alg.grad_fidelity(Aideal_ftm, xi, residual)
        gradall[...,0] += l1_r1 * alg.grad_sparsity(Adwt_addx_w, xi[...,0])
        gradall[...,1] += l1_r1 * alg.grad_sparsity(Adwt_addx_f, xi[...,1])
        gradall[...,2] += l1_r2 * alg.grad_sparsity(Adwt_addx_d, xi[...,2])  
        return gradall      

    #do soft thresholding
    #Nite = 20 #number of iterations
    #step = 0.1 #step size
    #th   = 1 # theshold level
    #do tv cs mri recon
    #Nite = 40 #number of iterations
    #step = 1 #step size
    #tv_r = 0.01 # regularization term for tv term
    #rho  = 1.0  
    ostep = 1.0#0.3       
    for i in range(20):
        #wavelet L1 IST
    #    dxpar = solvers.IST_3( Aideal_ftm.forward, Aideal_ftm.backward,\
    #                Adwt_addx.backward, Adwt_addx.forward, residual, Nite, step, th )
        #wavelet L1 ADMM
    #    dxpar = solvers.ADMM_l2Afxnb_l1Tfx( Aideal_ftm.forward, Aideal_ftm.backward, \
    #               Adwt_addx.backward, Adwt_addx.forward, residual, Nite, step, tv_r, rho,15 )
        # TV ADMM
    #    dxpar = solvers.ADMM_l2Afxnb_tvx( Aideal_ftm.forward, Aideal_ftm.backward, residual\
    #    	, Nite, step, tv_r, rho ) 
        # L2 CGD
    #    dxpar = pf.prox_l2_Afxnb_CGD2( Aideal_ftm.forward, Aideal_ftm.backward, residual, rho, Nite )
    #    dxpar = pf.prox_l2_Afxnb_CGD2( Aideal_ftm.forward, Aideal_ftm.backward, residual, Nite )
        # L1 CGD
        dxpar   = alg.conjugate_gradient(f, df, Aideal_ftm.backward(residual), Nite )
        ostep,j = alg.BacktrackingLineSearch(f, df, xpar, dxpar)
        if i%1 == 0:
            ut.plotim3(np.absolute(xpar + ostep*dxpar)[...,0:2],bar=1)
            ut.plotim3(np.real(xpar + ostep*dxpar)[...,2],bar=1)
            ut.plotim3(np.imag(xpar + ostep*dxpar)[...,2],bar=1)
        xpar = xpar + ostep*dxpar#.astype(np.float64)   

        #if i > 1: #unwrapping on frequence
        #    xpar[:,:,2] = np.real(unwrap_freq(np.real(xpar[:,:,2])))\
        #    +1j*(np.imag(xpar[:,:,2]))

        IDEAL.set_x(xpar) #should update in each gauss newton iteration
        residual = IDEAL.residual(b, FTm)
    #    addx.set_x(xpar) #should update in each gauss newton iteration
        addx_water.set_x(xpar[...,0]) #should update in each gauss newton iteration
        addx_fat.set_x  (xpar[...,1])
        addx_df.set_x   (xpar[...,2])
    ut.plotim3(np.absolute(xpar)[...,0:2],bar=1)
    ut.plotim3(np.real(xpar + ostep*dxpar)[...,2],bar=1)
    ut.plotim3(np.imag(xpar + ostep*dxpar)[...,2],bar=1)
    sio.savemat(pathdat + 'IDEAL_CGD_result.mat', {'xpar':xpar, 'residual':residual})
Exemplo n.º 10
0
def test():
    # simulated image
    #mat_contents = sio.loadmat('/data/larson/brain_uT2/2016-09-13_3T-volunteer/ute_32echo_random-csreconallec_l2_r0p01.mat', struct_as_record=False, squeeze_me=True)

    #datpath = '/data/larson/brain_uT2/2016-12-22_7T-volunteer/' #
    datpath = '/data/larson/brain_uT2/2016-09-13_3T-volunteer/'
    f = h5py.File(datpath + 'ute_32echo_random-csreconallec_l2_r0p01.mat')

    #im3d         = f['imallplus'][0:10].transpose([1,2,3,0])
    #im           = im3d[:,40,:,:].squeeze().view(np.complex128)
    Ndiv = 8
    im3d = f['imallplus'][0:Ndiv].transpose([1, 3, 2, 0])
    im = im3d[35, :, :, :].squeeze().view(np.complex128)

    b0_gain = 1000.0
    TE = b0_gain * 1e-6 * f['TE'][0][0:Ndiv]
    field = 3.0
    fat_freq_arr = (1.0 / b0_gain) * 42.58 * field * np.array(
        [-3.80, -3.40, -2.60, -1.94, -0.39, 0.60])
    fat_rel_amp = np.array([0.087, 0.693, 0.128, 0.004, 0.039, 0.048])
    print(1000 / b0_gain * TE)
    #ut.plotim3(np.absolute(im[:,:,-10:-1]),[4,-1])

    nx, ny, nte = im.shape
    #undersampling
    #mask       = ut.mask3d( nx, ny, nte, [15,15,0], 0.8)
    #FTm   = opts.FFT2d_kmask(mask)
    #FTm        = opts.FFTW2d_kmask(mask)
    #FTm   = opts.FFT2d()
    #b          = FTm.forward(im)
    scaling = ut.scaling(im)
    im = im / scaling
    ut.plotim3(np.absolute(im[:, :, :]), [4, -1], bar=1, pause_close=2)

    #ut.plotim3(mask)
    #ut.plotim3(np.absolute(FTm.backward(b))) #undersampled imag
    #parameters
    xpar = np.zeros((nx, ny, 4), np.complex128)
    #xpar[:,:,0]  = 10*np.ones((nx,ny))
    #ut.plotim3(np.absolute(xpar),[3,-1])
    # IDEAL and FFT jointly
    IDEAL = idealc.IDEAL_fatmyelin_opt2(
        TE, fat_freq_arr, fat_rel_amp)  #fat_freq_arr , fat_rel_amp
    Aideal_ftm = IDEAL  #opts.joint2operators(IDEAL, FTm)#(FTm,IDEAL)#
    IDEAL.set_x(xpar)  #should update in each gauss newton iteration
    residual = IDEAL.residual(im)
    #ut.plotim3(np.absolute(FTm.backward(residual)))
    # wavelet and x+d_x
    addx_water = idealc.x_add_dx()
    addx_fat = idealc.x_add_dx()
    addx_dfwater = idealc.x_add_dx()
    addx_dffat = idealc.x_add_dx()

    #addx        = idealc.x_add_dx()
    #addx.set_x(xpar)
    #addx.set_w([1, 1, 0.0001])
    addx_water.set_x(xpar[...,
                          0])  #should update in each gauss newton iteration
    addx_fat.set_x(xpar[..., 1])
    addx_dfwater.set_x(xpar[..., 2])
    addx_dffat.set_x(xpar[..., 3])

    dwt = opts.DWT2d(wavelet='haar', level=4)
    tvop = tvopc.TV2d_r()
    Adwt_addx_w = opts.joint2operators(tvop, addx_water)
    Adwt_addx_f = opts.joint2operators(tvop, addx_fat)
    Adwt_addx_dwat = opts.joint2operators(tvop, addx_dfwater)
    Adwt_addx_dfat = opts.joint2operators(tvop, addx_dffat)

    #Adwt_addx   = opts.joint2operators(dwt, addx)

    #CGD
    Nite = 100
    l1_r1 = 0.01
    l1_r2 = 0.01
    l1_r3 = 0.01
    l1_r4 = 0.01

    def f(xi):
        #return np.linalg.norm(Aideal_ftm.forward(xi)-residual)
        return alg.obj_fidelity(Aideal_ftm, xi, residual)  #\
        + l1_r1 * alg.obj_sparsity(Adwt_addx_w, xi[...,0])\
        + l1_r2 * alg.obj_sparsity(Adwt_addx_f, xi[...,1])\
        + l1_r3 * alg.obj_sparsity(Adwt_addx_dwat, xi[...,2])\
        + l1_r4 * alg.obj_sparsity(Adwt_addx_dfat, xi[...,3])

    def df(xi):
        #return 2*Aideal_ftm.backward(Aideal_ftm.forward(xi)-residual)
        gradall = alg.grad_fidelity(Aideal_ftm, xi, residual)
        gradall[..., 0] += l1_r1 * alg.grad_sparsity(Adwt_addx_w, xi[..., 0])
        gradall[..., 1] += l1_r2 * alg.grad_sparsity(Adwt_addx_f, xi[..., 1])
        gradall[...,
                2] += l1_r3 * alg.grad_sparsity(Adwt_addx_dwat, xi[..., 2])
        gradall[...,
                3] += l1_r4 * alg.grad_sparsity(Adwt_addx_dfat, xi[..., 3])

        return gradall

    #do soft thresholding
    #Nite = 200 #number of iterations
    #step = 0.1 #step size
    #th   = 0.001 # theshold level
    #do tv cs mri recon
    #Nite = 20 #number of iterations
    #step = 1 #step size
    #tv_r = 0.01 # regularization term for tv term
    #rho  = 1.0
    #ostep = 0.3
    for i in range(40):
        #wavelet L1 IST
        #    dxpar = solvers.IST_3( Aideal_ftm.forward, Aideal_ftm.backward,\
        #                Adwt_addx.backward, Adwt_addx.forward, residual, Nite, step, th )
        #wavelet L1 ADMM
        #    dxpar = solvers.ADMM_l2Afxnb_l1Tfx( Aideal_ftm.forward, Aideal_ftm.backward, \
        #               Adwt_addx.backward, Adwt_addx.forward, residual, Nite, step, tv_r, rho,25 )
        # TV ADMM
        #    dxpar = solvers.ADMM_l2Afxnb_tvx( Aideal_ftm.forward, Aideal_ftm.backward, residual\
        #    	, Nite, step, tv_r, rho )
        # L2 CGD
        #    dxpar = pf.prox_l2_Afxnb_CGD2( Aideal_ftm.forward, Aideal_ftm.backward, residual, rho, Nite )
        #    dxpar = pf.prox_l2_Afxnb_CGD2( Aideal_ftm.forward, Aideal_ftm.backward, residual, Nite )
        # L1 CGD
        #dxpar = pf.prox_l2_Afxnb_CGD2( IDEAL.forward, IDEAL.backward, residual, Nite )
        dxpar = alg.conjugate_gradient(f, df, Aideal_ftm.backward(residual),
                                       Nite)
        ostep, j = alg.BacktrackingLineSearch(f, df, xpar, dxpar)
        if i % 1 == 0:
            nxpar = xpar + ostep * dxpar
            nxpar[..., 1] = 10 * nxpar[..., 1]
            ut.plotim3(np.absolute(nxpar)[..., 0:2],
                       colormap='viridis',
                       bar=1,
                       vmin=0,
                       vmax=1,
                       pause_close=2)
            ut.plotim3(b0_gain * np.real(nxpar)[..., 2],
                       colormap='viridis',
                       bar=1,
                       pause_close=2)
            ut.plotim3(b0_gain * np.imag(nxpar)[..., 2],
                       colormap='viridis',
                       bar=1,
                       pause_close=2)
            ut.plotim3(b0_gain * np.real(nxpar)[..., 3],
                       colormap='viridis',
                       bar=1,
                       pause_close=2)
            ut.plotim3(b0_gain * np.imag(nxpar)[..., 3],
                       colormap='viridis',
                       bar=1,
                       pause_close=2)
            sio.savemat(datpath + 'cs_ideal_fitting/cs_IDEAL_CGD.mat', {
                'xpar': xpar,
                'residual': residual
            })
        xpar = xpar + ostep * dxpar  #.astype(np.float64)

        #if i > 1: #fix the frequence offset to be equal for two components
        #    freq_ave    = 0.5 * np.real(xpar[:,:,2]) + 0.5 * np.real(xpar[:,:,3])
        #    xpar[:,:,2] = freq_ave +1j*(np.imag(xpar[:,:,2]))
        #    xpar[:,:,3] = freq_ave +1j*(np.imag(xpar[:,:,3]))

        IDEAL.set_x(xpar)  #should update in each gauss newton iteration
        residual = IDEAL.residual(im)
        ut.plotim3(np.absolute(residual), [4, -1], bar=1, pause_close=2)

        sio.savemat('../save_data/myelin/ideal_result_cg.mat', \
             {'xpar':xpar, 'residual':residual})

        #addx.set_x(xpar) #should update in each gauss newton iteration
        addx_water.set_x(
            xpar[..., 0])  #should update in each gauss newton iteration
        addx_fat.set_x(xpar[..., 1])
        addx_dfwater.set_x(xpar[..., 2])
        addx_dffat.set_x(xpar[..., 3])

    ut.plotim3(np.absolute(xpar)[..., 0:2], bar=1)
    ut.plotim3(np.real(xpar + ostep * dxpar)[..., 2], bar=1)
    ut.plotim3(np.imag(xpar + ostep * dxpar)[..., 2], bar=1)
    ut.plotim3(np.real(xpar + ostep * dxpar)[..., 3], bar=1)
    ut.plotim3(np.imag(xpar + ostep * dxpar)[..., 3], bar=1)
Exemplo n.º 11
0
def test():
    # simulated image
    mat_contents = sio.loadmat('data/sim_2dmri.mat')
    im = mat_contents["sim_2dmri"]
    #im = spimg.zoom(xorig, 0.4)
    #plotim2(im)

    #dwt = opts.DWTnd( wavelet = 'haar', level = 2, axes = (0, 1))
    dwt = opts.DWT2d(wavelet='haar', level=4)
    nx, ny = im.shape

    mask = ut.mask2d(nx, ny, center_r=15)
    FTm = opts.FFT2d_kmask(mask)
    #FTm          = opts.FFT2d()
    #ut.plotim1(np.absolute(mask))#plot the mask

    # undersampling in k-space
    b = FTm.forward(im)
    scaling = ut.optscaling(FTm, b)
    b = b / scaling
    #ut.plotim1(np.absolute(FTm.backward(b))) #undersampled imag

    tvop = tvopc.TV2d()
    #CGD
    Nite = 20
    l1_r = 0.01
    tv_r = 0.2

    #def f(xi):
    #ut.plotim1(np.absolute(FTm.backward(FTm.forward(xi)-b)),bar=1)
    #    return alg.obj_fidelity(FTm, xi, b) \
    #    + l1_r * alg.obj_sparsity(dwt,  xi) \
    #    + tv_r * alg.obj_sparsity(tvop, xi)

    #def df(xi):
    #gradall  = np.zeros(xi.shape)
    #    gradall  = alg.grad_fidelity(FTm, xi, b)
    #    gradall += l1_r * alg.grad_sparsity(dwt,  xi)
    #    gradall += tv_r * alg.grad_sparsity(tvop, xi)
    #    return gradall

    def h(xi):
        #ut.plotim1(np.absolute(FTm.backward(FTm.forward(xi)-b)),bar=1)
        return tv_r * alg.obj_sparsity(tvop, xi) + l1_r * alg.obj_sparsity(
            dwt, xi)  # +

    def dh(xi):
        gradall = np.zeros(xi.shape, np.complex128)
        gradall += l1_r * alg.grad_sparsity(dwt, xi)
        gradall += tv_r * alg.grad_sparsity(tvop, xi)
        return gradall

    #xopt   = alg.conjugate_gradient(f, df, FTm.backward(b), Nite )
    #xopt = pf.prox_l2_Afxnb_CGD2( FTm.forward, FTm.backward, b, Nite )
    xopt = FTm.backward(b)
    for _ in range(100):
        xopt = pf.prox_l2_Afxnb_CGD3(FTm.forward, FTm.backward, xopt, b, h, dh,
                                     Nite, 3)
        #ut.plotim1(np.absolute(xopt))
    #do soft thresholding
    #Nite = 100 #number of iterations
    #step = 1 #step size
    #th = 1.5 # theshold level
    #xopt = solvers.IST_2(FTm.forward, FTm.backward, b, Nite, step,th)
    #xopt = solvers.IST_3( FTm.forward, FTm.backward, dwt.backward, dwt.forward, b, Nite, step, th )
    ut.plotim1(np.absolute(xopt))
Exemplo n.º 12
0
def test():
    # simulated image
    mat_contents = sio.loadmat('data/kellman_data/PKdata3.mat',
                               struct_as_record=False,
                               squeeze_me=True)
    xdata = mat_contents["data"]
    im = xdata.images
    field = xdata.FieldStrength
    b0_gain = 100.0
    TE = b0_gain * xdata.TE
    fat_freq_arr = (1.0 / b0_gain) * 42.58 * field * np.array(
        [-3.80, -3.40, -2.60, -1.94, -0.39, 0.60])
    fat_rel_amp = np.array([0.087, 0.693, 0.128, 0.004, 0.039, 0.048])

    ut.plotim3(np.real(im[:, :, :]))
    nx, ny, nte = im.shape
    #undersampling
    mask = ut.mask3d(nx, ny, nte, [15, 15, 0], 0.8)
    FTm = opts.FFT2d_kmask(mask)
    #FTm        = opts.FFTW2d_kmask(mask)
    #FTm   = opts.FFT2d()
    b = FTm.forward(im)
    scaling = ut.optscaling(FTm, b)
    b = b / scaling

    #ut.plotim3(mask)
    ut.plotim3(np.absolute(FTm.backward(b)))  #undersampled imag
    #parameters
    xpar = np.zeros((nx, ny, 3), np.complex128)
    #xpar[:,:,0]  = 10*np.ones((nx,ny))
    #ut.plotim3(np.absolute(xpar),[3,-1])
    # IDEAL and FFT jointly
    IDEAL = idealc.IDEAL_opt2(TE, fat_freq_arr,
                              fat_rel_amp)  #fat_freq_arr , fat_rel_amp
    Aideal_ftm = opts.joint2operators(IDEAL, FTm)  #(FTm,IDEAL)#
    IDEAL.set_x(xpar)  #should update in each gauss newton iteration
    residual = IDEAL.residual(b, FTm)
    #ut.plotim3(np.absolute(FTm.backward(residual)))
    # wavelet and x+d_x
    addx = idealc.x_add_dx()
    addx.set_x(xpar)
    #addx.set_w([1, 1, 0.0001])
    dwt = opts.DWT2d(wavelet='haar', level=4)
    Adwt_addx = opts.joint2operators(dwt, addx)

    #do soft thresholding
    #Nite = 200 #number of iterations
    #step = 0.01 #step size
    #th   = 0.02 # theshold level
    #do tv cs mri recon
    Nite = 10  #number of iterations
    step = 1  #step size
    l1_r = 0.001
    tv_r = 0.0001  # regularization term for tv term
    rho = 1.0
    ostep = 0.3

    for i in range(20):
        #wavelet L1 IST
        #    dxpar = solvers.IST_3( Aideal_ftm.forward, Aideal_ftm.backward,\
        #                Adwt_addx.backward, Adwt_addx.forward, residual, Nite, step, th )
        #wavelet L1 ADMM
        #    dxpar = solvers.ADMM_l2Afxnb_l1Tfx( Aideal_ftm.forward, Aideal_ftm.backward, \
        #               Adwt_addx.backward, Adwt_addx.forward, residual, Nite, step, l1_r, rho, 200 )
        # TV ADMM
        #    dxpar = solvers.ADMM_l2Afxnb_tvx( Aideal_ftm.forward, Aideal_ftm.backward, residual\
        #    	, Nite, step, tv_r, rho, 15 )
        dxpar = solvers.ADMM_l2Afxnb_tvTfx( Aideal_ftm.forward, Aideal_ftm.backward, \
                   addx.backward, addx.forward, residual, Nite, step, l1_r, rho, 200 )

        # L2 CGD
        #    dxpar = pf.prox_l2_Afxnb_CGD2( Aideal_ftm.forward, Aideal_ftm.backward, residual, rho, Nite )
        #    dxpar = pf.prox_l2_Afxnb_CGD2( Aideal_ftm.forward, Aideal_ftm.backward, residual, Nite )

        if i % 1 == 0:
            ut.plotim3(np.absolute(xpar + ostep * dxpar)[..., 0:2], bar=1)
            ut.plotim3(b0_gain * np.real(xpar + ostep * dxpar)[..., 2], bar=1)
            ut.plotim3(np.imag(xpar + ostep * dxpar)[..., 2], bar=1)

        xpar = xpar + ostep * dxpar  #.astype(np.float64)

        IDEAL.set_x(xpar)  #should update in each gauss newton iteration
        residual = IDEAL.residual(b, FTm)
        addx.set_x(xpar)  #should update in each gauss newton iteration
        sio.savemat('data/kellman_data/xpar.mat', {'xpar': xpar})
    ut.plotim3(np.absolute(xpar)[..., 0:2], bar=1)