Exemplo n.º 1
0
def test():
    # simulated image
    mat_contents = sio.loadmat('data/sim_2dmri.mat')
    im = mat_contents["sim_2dmri"]
    #im = spimg.zoom(xorig, 0.4)
    #plotim2(im)

    #dwt = opts.DWTnd( wavelet = 'haar', level = 2, axes = (0, 1))
    dwt = opts.DWT2d(wavelet='haar', level=4)
    nx, ny = im.shape

    mask = ut.mask2d(nx, ny, center_r=15)
    FTm = opts.FFT2d_kmask(mask)
    ut.plotim1(np.absolute(mask))  #plot the mask

    # undersampling in k-space
    b = FTm.forward(im)
    scaling = ut.optscaling(FTm, b)
    b = b / scaling
    ut.plotim1(np.absolute(FTm.backward(b)))  #undersampled imag

    #do soft thresholding
    Nite = 100  #number of iterations
    step = 1  #step size
    th = 1.5  # theshold level
    #xopt = solvers.IST_2(FTm.forward, FTm.backward, b, Nite, step,th)
    xopt = solvers.IST_3(FTm.forward, FTm.backward, dwt.backward, dwt.forward,
                         b, Nite, step, th)
    ut.plotim1(np.absolute(xopt))
Exemplo n.º 2
0
def test():
    # simulated image
    #mat_contents = sio.loadmat('/data/larson/brain_uT2/2016-09-13_3T-volunteer/ute_32echo_random-csreconallec_l2_r0p01.mat', struct_as_record=False, squeeze_me=True)

    #datpath = '/data/larson/brain_uT2/2016-12-19_7T-volunteer/' #
    datpath = '/data/larson/brain_uT2/2016-09-13_3T-volunteer/'
    f = h5py.File(datpath + 'ute_32echo_random-csreconallec_l2_r0p01.mat')

    #datpath = '/data/larson/brain_uT2/2017-11-17_3T-DTI-volunteer/'
    #f = h5py.File(datpath+'P31232_ir4echo.7-csreconallec_l2_r0p01.mat')
    #im3d         = f['imallplus'][0:10].transpose([1,2,3,0])
    #im           = im3d[:,40,:,:].squeeze().view(np.complex128)
    Ndiv = 4
    im3d = f['imallplus'][0:Ndiv].transpose([1, 3, 2, 0])
    im = im3d[35, :, :, :].squeeze().view(np.complex128)

    b0_gain = 1000.0
    TE = b0_gain * 1e-6 * f['TE'][0][0:Ndiv]
    #TE = TEi[0:Ndiv]

    field = 3.0
    fat_freq_arr = (1.0 / b0_gain) * 42.58 * field * np.array(
        [-3.80, -3.40, -2.60, -1.94, -0.39, 0.60])
    fat_rel_amp = np.array([0.087, 0.693, 0.128, 0.004, 0.039, 0.048])
    print(1000 / b0_gain * TE)
    #ut.plotim3(np.absolute(im[:,:,-10:-1]),[4,-1])

    nx, ny, nte = im.shape
    if 0:
        nte = nte - 1
        im = 1j * np.zeros((nx, ny, Ndiv))
        for nd in range(Ndiv):
            im[:, :, nd] = (imi[:, :, nd] - imi[:, :, nd + 1]) / (TEi[nd] -
                                                                  TEi[nd + 1])

    print(im.shape)
    #undersampling
    #mask       = ut.mask3d( nx, ny, nte, [15,15,0], 0.8)
    #FTm   = opts.FFT2d_kmask(mask)
    #FTm        = opts.FFTW2d_kmask(mask)
    #FTm   = opts.FFT2d()
    #b          = FTm.forward(im)
    scaling = ut.scaling(im)
    im = im / scaling
    ut.plotim3(np.absolute(im[:, :, :]), [4, -1], bar=1, pause_close=2)

    #ut.plotim3(mask)
    #ut.plotim3(np.absolute(FTm.backward(b))) #undersampled imag
    #parameters
    xpar = np.zeros((nx, ny, 4), np.complex128)
    #xpar[:,:,0]  = 10*np.ones((nx,ny))
    #ut.plotim3(np.absolute(xpar),[3,-1])
    # IDEAL and FFT jointly
    IDEAL = idealc.IDEAL_fatmyelin_opt2(
        TE, fat_freq_arr, fat_rel_amp)  #fat_freq_arr , fat_rel_amp
    Aideal_ftm = IDEAL  #opts.joint2operators(IDEAL, FTm)#(FTm,IDEAL)#
    IDEAL.set_x(xpar)  #should update in each gauss newton iteration
    residual = IDEAL.residual(im)
    #ut.plotim3(np.absolute(FTm.backward(residual)))
    # wavelet and x+d_x
    addx_water = idealc.x_add_dx()
    addx_fat = idealc.x_add_dx()
    addx_dfwater = idealc.x_add_dx()
    addx_dffat = idealc.x_add_dx()

    addx = idealc.x_add_dx()
    addx.set_x(xpar)
    #addx.set_w([0.01, 0.01, 0.0001])
    #addx_water.set_x   (xpar[...,0]) #should update in each gauss newton iteration
    #addx_fat.set_x     (xpar[...,1])
    #addx_dfwater.set_x (xpar[...,2])
    #addx_dffat.set_x   (xpar[...,3])

    dwt = opts.DWT2d(wavelet='haar', level=4)
    tvop = tvopc.TV2d_r()
    #Adwt_addx_w  = opts.joint2operators(tvop, addx_water)
    #Adwt_addx_f  = opts.joint2operators(tvop, addx_fat)
    #Adwt_addx_dwat = opts.joint2operators(tvop, addx_dfwater)
    #Adwt_addx_dfat = opts.joint2operators(tvop, addx_dffat)

    Adwt_addx = opts.joint2operators(dwt, addx)

    #CGD
    #Nite  = 400
    #l1_r1 = 0.01
    #l1_r2 = 0.01
    #l1_r3 = 0.01
    #l1_r4 = 0.01
    #def f(xi):
    #return np.linalg.norm(Aideal_ftm.forward(xi)-residual)
    #    return alg.obj_fidelity(Aideal_ftm, xi, residual) \
    #    + l1_r1 * alg.obj_sparsity(Adwt_addx_w, xi[...,0])\
    #    + l1_r2 * alg.obj_sparsity(Adwt_addx_f, xi[...,1])\
    #    + l1_r3 * alg.obj_sparsity(Adwt_addx_dwat, xi[...,2])\
    #    + l1_r4 * alg.obj_sparsity(Adwt_addx_dfat, xi[...,3])

    #def df(xi):
    #return 2*Aideal_ftm.backward(Aideal_ftm.forward(xi)-residual)
    #    gradall = alg.grad_fidelity(Aideal_ftm, xi, residual)
    #    gradall[...,0] += l1_r1 * alg.grad_sparsity(Adwt_addx_w, xi[...,0])
    #    gradall[...,1] += l1_r2 * alg.grad_sparsity(Adwt_addx_f, xi[...,1])
    #    gradall[...,2] += l1_r3 * alg.grad_sparsity(Adwt_addx_dwat, xi[...,2])
    #    gradall[...,3] += l1_r4 * alg.grad_sparsity(Adwt_addx_dfat, xi[...,3])

    #    return gradall

    #do soft thresholding
    Nite = 40  #number of iterations
    step = 0.001  #step size
    th = 0.001  # theshold level
    #do tv cs mri recon
    #Nite = 20 #number of iterations
    #step = 1 #step size
    #tv_r = 0.001 # regularization term for tv term
    #rho  = 1.0
    ostep = 0.6
    for i in range(40):
        #wavelet L1 IST
        dxpar = solvers.IST_3( Aideal_ftm.forward, Aideal_ftm.backward,\
                    Adwt_addx.backward, Adwt_addx.forward, residual, Nite, step, th )
        #wavelet L1 ADMM
        #    dxpar = solvers.ADMM_l2Afxnb_l1Tfx( Aideal_ftm.forward, Aideal_ftm.backward, \
        #               Adwt_addx.backward, Adwt_addx.forward, residual, Nite, step, tv_r, rho,25 )

        # TV ADMM
        #    dxpar = solvers.ADMM_l2Afxnb_tvx( Aideal_ftm.forward, Aideal_ftm.backward, residual\
        #    	, Nite, step, tv_r, rho )
        #    dxpar = solvers.ADMM_l2Afxnb_tvTfx( Aideal_ftm.forward, Aideal_ftm.backward, \
        #               addx.backward, addx.forward, residual, Nite, step, tv_r, rho,25)

        # L2 CGD
        #    dxpar = pf.prox_l2_Afxnb_CGD2( Aideal_ftm.forward, Aideal_ftm.backward, residual, rho, Nite )
        #    dxpar = pf.prox_l2_Afxnb_CGD2( Aideal_ftm.forward, Aideal_ftm.backward, residual, Nite )
        # L1 CGD
        #dxpar = pf.prox_l2_Afxnb_CGD2( IDEAL.forward, IDEAL.backward, residual, Nite )
        #    dxpar   = alg.conjugate_gradient(f, df, Aideal_ftm.backward(residual), Nite )
        #    ostep,j = alg.BacktrackingLineSearch(f, df, xpar, dxpar)
        if i % 1 == 0:
            nxpar = xpar + ostep * dxpar
            nxpar[..., 1] = 10 * nxpar[..., 1]
            ut.plotim3(np.absolute(nxpar)[..., 0:2],
                       colormap='viridis',
                       bar=1,
                       vmin=0,
                       vmax=1,
                       pause_close=2)
            ut.plotim3(b0_gain * np.real(nxpar)[..., 2],
                       colormap='viridis',
                       bar=1,
                       pause_close=2)
            ut.plotim3(b0_gain * np.imag(nxpar)[..., 2],
                       colormap='viridis',
                       bar=1,
                       pause_close=2)
            ut.plotim3(b0_gain * np.real(nxpar)[..., 3],
                       colormap='viridis',
                       bar=1,
                       pause_close=2)
            ut.plotim3(b0_gain * np.imag(nxpar)[..., 3],
                       colormap='viridis',
                       bar=1,
                       pause_close=2)
            #sio.savemat(datpath + 'cs_ideal_fitting/cs_IDEAL_ADMM_dyn8.mat', {'xpar': nxpar, 'residual': residual})
        xpar = xpar + ostep * dxpar  #.astype(np.float64)

        if i > 1:  #fix the frequence offset to be equal for two components
            freq_ave = 0.5 * np.real(xpar[:, :, 2]) + 0.5 * np.real(xpar[:, :,
                                                                         3])
            xpar[:, :, 2] = freq_ave + 1j * (np.imag(xpar[:, :, 2]))
            xpar[:, :, 3] = freq_ave + 1j * (np.imag(xpar[:, :, 3]))

        IDEAL.set_x(xpar)  #should update in each gauss newton iteration
        residual = IDEAL.residual(im)
        ut.plotim3(np.absolute(residual), [4, -1], bar=1, pause_close=2)

        sio.savemat('../save_data/myelin/ideal_result.mat', \
             {'xpar':xpar})

        addx.set_x(xpar)  #should update in each gauss newton iteration
        #addx_water.set_x(xpar[...,0]) #should update in each gauss newton iteration
        #addx_fat.set_x  (xpar[...,1])
        #addx_dfwater.set_x(xpar[...,2])
        #addx_dffat.set_x  (xpar[...,3])

    ut.plotim3(np.absolute(xpar)[..., 0:2], bar=1)
    ut.plotim3(np.real(xpar + ostep * dxpar)[..., 2], bar=1)
    ut.plotim3(np.imag(xpar + ostep * dxpar)[..., 2], bar=1)
    ut.plotim3(np.real(xpar + ostep * dxpar)[..., 3], bar=1)
    ut.plotim3(np.imag(xpar + ostep * dxpar)[..., 3], bar=1)