Exemplo n.º 1
0
def drive_to_target(ugv, target, fault):
    pid = PID(0)
    ugv.theta = math.radians(0)
    i = 0
    distance = 100
    start_point = np.array([ugv.x, ugv.y, ugv.theta])
    max_iter = 270
    steering_curr = 0.0
    velocity = 0.4
    steering_next = 0.0
    velocity_next = 0.0
    y = np.empty((max_iter, 2))
    y_dot = np.empty((max_iter, 2))

    while (i != max_iter):
        ugv.path_data.append([ugv.x, ugv.y, ugv.theta, i])
        ugv.calculateError(target)
        pid.calculatePID(ugv.distance_error, ugv.heading_error, 0.1)
        # print("GAMMA: %s" % pid.steering)
        steering = pid.steering
        velocity_next = pid.velocity
        y[i, :] = [ugv.y + velocity * math.sin(ugv.theta), i]
        ugv.dynamics(velocity, 0.0, fault, 0.1)
        y_dot[i, :] = [ugv.y, i]
        i += 1

    path = np.array(ugv.path_data)
    print(path.shape)
    plt.plot(path[:, 0], path[:, 1])
    plt.xlabel("x (meters)")
    plt.ylabel("y (meters)")
    plt.title("UGV Path: Problem 1.b)")
    # plt.gcf().gca().add_artist(Wedge(center=(int(start_point[0]), int(start_point[1])), r=1, theta1=45, theta2=75, width=1))
    plt.scatter(start_point[0], start_point[1], marker='o', color='blue')
    plt.show()

    # print(path)
    # print(y_dot)
    noise_data = np.subtract(y_dot[:, 0], y[:, 0])
    plt.plot(path[:, 0], noise_data)
    plt.show()
class Controller():
    def __init__(self, initial_position, initial_orientation, odometry_topic,
                 velocity_topic, k):
        self.x = initial_position[0]
        self.y = initial_position[1]
        self.z = initial_position[2]
        self.roll = initial_orientation[0]
        self.pitch = initial_orientation[1]
        self.yaw = initial_orientation[2]
        self.odom = odometry_topic
        self.cmd_vel = velocity_topic
        self.distance = 0.0
        self.heading = 0.0
        self.pid = PID(k)
        self.last_time = 0.0
        self.threshold = 0.1

    def odomCallback(self, data):
        self.x = float(round(data.pose.pose.position.x, 1))
        self.y = float(round(data.pose.pose.position.y, 1))
        self.z = float(round(data.pose.pose.position.z, 1))
        orientation_quaternion = data.pose.pose.orientation
        orientation_list = [
            orientation_quaternion.x, orientation_quaternion.y,
            orientation_quaternion.z, orientation_quaternion.w
        ]
        (roll, pitch, yaw) = euler_from_quaternion(orientation_list)
        self.roll = float(roll)
        self.pitch = float(pitch)
        self.yaw = float(yaw)

    ####
    #    Parameters: target = [x*, y*]
    #    Returns: Euclidean Distance Error, Heading Error
    ####
    def calculateError(self, target):
        delta_x = np.clip(target[0] - self.x, -1e50, 1e50)
        delta_y = np.clip(target[1] - self.y, -1e50, 1e50)
        desired_heading = math.atan2(delta_y, delta_x)

        self.heading = desired_heading - self.yaw
        delta_x2 = delta_x**2
        delta_y2 = delta_y**2
        if math.isinf(delta_x2):
            delta_x2 = 1e25
        if math.isinf(delta_y2):
            delta_y2 = 1e25
        self.distance = math.sqrt(delta_x2 + delta_y2)

    def moveToTarget(self):

        rospy.init_node('mouseToJoy', anonymous=True)
        #### Setup Odometry Subscriber
        rospy.Subscriber(self.odom,
                         Odometry,
                         self.odomCallback,
                         queue_size=1,
                         tcp_nodelay=True)

        #### Setup Velocity Publisher
        velocityPublisher = rospy.Publisher(self.cmd_vel,
                                            Twist,
                                            queue_size=1,
                                            tcp_nodelay=True)
        rate = rospy.Rate(20)  # 20hz
        data = Twist()

        x_target = float(input("Enter X Target: \n"))
        y_target = float(input("Enter Y Target: \n"))
        target = np.array([x_target, y_target])

        while not rospy.is_shutdown():
            self.calculateError(target)
            dt = rospy.Time.now().to_sec() - self.last_time
            self.pid.calculatePID(self.distance, self.heading, dt)
            self.last_time = rospy.Time.now().to_sec()

            print(self.x, self.y)

            if math.fabs(self.distance) > self.threshold:
                data.linear.x = 0.2
                #data.linear.x = self.pid.velocity
                # msg.angular.z = 100
                data.angular.z = self.pid.steering

            else:
                data.linear.x = 0.0
                data.angular.z = 0.0
                print("Target Reached")
                subprocess.call(
                    "rosservice call /zed/zed_node/set_pose 0 0 0 0 0 0 ")
                velocityPublisher.publish(data)
                rate.sleep()
                sys.exit(1)

            velocityPublisher.publish(data)
            rate.sleep()
Exemplo n.º 3
0
class Bicycle():
    def __init__(self, phi=0.0):
        self.x = 0.0
        self.y = 0.0
        self.theta = math.radians(0)
        self.drift_angle = phi
        self.desired_x = 0
        self.desired_y = 0
        self.heading_error = 0.0
        self.distance_error = 100000.0
        self.distance = 0.1
        self.T = 50.0
        self.max_rad = 38.0
        self.max_vel = 1.0
        self.max_iter = 1200 * 8
        self.L = 0.19
        self.pid = PID()
        self.path_data = []

    def dynamics(self, v, gamma, dt):
        self.x = np.clip(self.x, -1e5, 1e5)
        self.x = np.float64(self.x)

        if self.drift_angle == 0.0:
            # ideal dynamics
            yaw_dot = ((v / self.L) * (math.tan(gamma))) * dt
            x_dot = (v * math.cos(self.theta)) * dt
            y_dot = (v * math.sin(self.theta)) * dt

        else:
            # fault dynamics
            noise_gamma = gamma + self.drift_angle + np.random.normal(
                0, 0.0125)
            yaw_dot = ((v / self.L) * (math.tan(noise_gamma))) * dt
            x_dot = (v * math.cos(self.theta)) * dt
            y_dot = (v * math.sin(self.theta)) * dt

        # yaw_dot = np.clip(yaw_dot, -math.radians(45), math.radians(45))
        # x_dot = np.clip(x_dot, -0.1, 0.1)
        # y_dot = np.clip(y_dot, -0.1, 0.1)

        self.theta = self.theta + yaw_dot
        self.x = self.x + x_dot
        self.y = self.y + y_dot

    def angdiff(self, a, b):
        diff = a - b
        if diff < 0.0:
            diff = (diff % (-2 * math.pi))
            if diff < (-math.pi):
                diff = diff + 2 * math.pi
        else:
            diff = (diff % 2 * math.pi)
            if diff > math.pi:
                diff = diff - 2 * math.pi

        return diff

    def calculate_error(self):
        delta_x = np.clip(self.desired_x - self.x, -1e50, 1e50)
        delta_y = np.clip(self.desired_y - self.y, -1e50, 1e50)
        desired_heading = math.atan2(delta_y, delta_x)
        self.heading_error = self.angdiff(desired_heading, self.theta)

        delta_x2 = delta_x**2
        delta_y2 = delta_y**2
        if math.isinf(delta_x2):
            delta_x2 = 1e25
        if math.isinf(delta_y2):
            delta_y2 = 1e25

        self.distance_error = math.sqrt(delta_x2 + delta_y2) - self.distance

    def drive_open_loop(self):
        self.path_data = []
        self.drift_angle = 0
        i = 0

        while (i != self.max_iter):
            self.path_data.append([self.x, self.y])
            dt = (1.0 / self.T)
            self.dynamics(0.36, -0.00615835, dt)
            i += 1

        path = np.asarray(self.path_data)
        #print(path.shape)
        plt.scatter(path[:, 0], path[:, 1])
        plt.xlabel("x (meters)")
        plt.ylabel("y (meters)")
        plt.title("UGV Path: Problem 1.a)")
        plt.show()

    def drive_along_path(self):
        # the target angle of the circular path being followed
        self.x = 4.0
        self.y = 0.0
        self.theta = math.radians(90)
        alpha = math.radians(0)
        cx = 2
        cy = 2
        r = 2
        i = 0
        self.desired_x = cx + r * math.cos(alpha)
        self.desired_y = cy + r * math.sin(alpha)

        while (i != self.max_iter):
            # Update trajectory
            if self.distance_error < self.distance * 4:
                alpha += math.radians(2)
            self.desired_x = cx + r * math.cos(alpha)
            self.desired_y = cy + r * math.sin(alpha)

            # if i % 10 == 0:
            #     print("Desired X: ", self.desired_x)
            #     print("Desired Y: ", self.desired_y)
            #     print("Alpha: ", alpha)

            # Compute error
            self.calculate_error()
            # print("Heading error: ", self.heading_error)
            # print("Distance error: ", self.distance_error)

            # Compute controls
            dt = (1.0 / self.T)
            self.pid.calculatePID(self.distance_error, self.heading_error, dt)

            # Execute controls
            self.dynamics(self.pid.velocity, self.pid.steering, dt)

            # Save new pose data and increment coutner
            i += 1
            self.path_data.append([self.x, self.y, self.theta])

        # Control scheme executed, save path data
        self.path_data = np.array(self.path_data)
Exemplo n.º 4
0
class Rover:
    def __init__(self):
        self.x = 0
        self.y = 0
        self.test_x = 0
        self.test_y = 0
        self.test_theta = 0
        self.theta = 0
        self.desired_x = 0
        self.desired_y = 0
        self.desired_theta = 0
        self.k = [0.1, 0.0, 0.0, 1, 0.0, 0.0]
        self.max_rad = 38.0
        self.max_vel = 1.0
        self.L = 0.19
        self.pid = PID(self.k)
        self.noise_path = []
        self.test_path = []
        self.prev_noise = 0.0
        self.noise_functions = np.array(
            [[2.00000000e+01, 6.62201978e-03, -1.99941291e+01],
             [-5.10091508, -0.06503655, 5.08946158],
             [-0.01754703, 1.0, 0.06324038]])

    def dynamics(self, v, gamma, fault):
        #noise dynamics
        theta_dot = ((v / self.L) * (math.tan(gamma)))
        x_dot = v * math.cos(self.theta)
        y_dot = v * math.sin(self.theta)

        self.x = np.clip(self.x, -1e5, 1e5)
        self.x = np.float128(self.x)
        noise = self.noise_functions[fault, 0] * np.exp(
            self.noise_functions[fault, 1] *
            self.x) + self.noise_functions[fault, 2]
        #derivatives
        self.theta = self.theta + np.clip(theta_dot,
                                          -1 * math.radians(self.max_rad),
                                          math.radians(self.max_rad))
        self.x = self.x + np.clip(x_dot, -1 * self.max_vel, self.max_vel)
        self.y = self.y + np.clip(y_dot, -1 * self.max_vel,
                                  self.max_vel) + (noise - self.prev_noise)
        self.prev_noise = noise

        #test dynamics
        theta_dot = ((v / self.L) * (math.tan(gamma)))
        x_dot = v * math.cos(self.test_theta)
        y_dot = v * math.sin(self.test_theta)

        self.x = np.clip(self.test_x, -1e5, 1e5)
        self.x = np.float128(self.test_x)
        #derivatives
        self.test_theta = self.test_theta + np.clip(
            theta_dot, -1 * math.radians(self.max_rad),
            math.radians(self.max_rad))
        self.test_x = self.test_x + np.clip(x_dot, -1 * self.max_vel,
                                            self.max_vel)
        self.test_y = self.test_y + np.clip(y_dot, -1 * self.max_vel,
                                            self.max_vel)

    def driveAlongPath(self, fault):
        self.x = 0
        self.y = 0
        self.test_x = 0
        self.test_y = 0
        self.theta = math.radians(45)
        self.test_theta = math.radians(45)
        distance = 1000000.0
        prev_noise = 0.0

        self.desired_x = 10.0
        self.desired_y = 10.0
        delta_x = self.desired_x - self.x
        delta_y = self.desired_y - self.y

        while distance >= 0.5:
            test_delta_x = np.clip(self.test_desired_x - self.test_x, -1e50,
                                   1e50)
            test_delta_y = np.clip(self.test_desired_y - self.test_y, -1e50,
                                   1e50)
            self.test_desired_theta = math.atan2(test_delta_x, test_delta_y)

            test_delta_theta = self.test_desired_theta - self.test_theta
            test_delta_x2 = test_delta_x**2
            test_delta_y2 = test_delta_y**2
            if math.isinf(test_delta_x2):
                test_delta_x2 = 1e25
            if math.isinf(test_delta_y2):
                test_delta_y2 = 1e25
            test_distance = math.sqrt(test_delta_x2 + test_delta_y2)

            delta_x = np.clip(self.desired_x - self.x, -1e50, 1e50)
            delta_y = np.clip(self.desired_y - self.y, -1e50, 1e50)
            self.desired_theta = math.atan2(delta_y, delta_x)

            delta_theta = self.desired_theta - self.test_theta
            delta_x2 = delta_x**2
            delta_y2 = delta_y**2
            if math.isinf(delta_x2):
                delta_x2 = 1e25
            if math.isinf(delta_y2):
                delta_y2 = 1e25
            distance = math.sqrt(delta_x2 + delta_y2)

            self.noise_path.append([self.x, self.y])
            self.test_path.append([self.test_x, self.test_y])
            self.pid.calculatePID(distance, delta_theta)
            self.dynamics(self.pid.v, self.pid.g, fault)

        self.noise_path = np.asarray(self.noise_path)
        self.test_path = np.asarray(self.test_path)
        plt.plot(self.noise_path[:, 0],
                 self.noise_path[:, 1],
                 color='red',
                 linewidth=2)
        plt.plot(self.test_path[:, 0],
                 self.test_path[:, 1],
                 color='blue',
                 linewidth=2)
        plt.xlabel('x')
        plt.ylabel('y')
        plt.title('UGV Path')
        plt.show()