Exemplo n.º 1
0
    def execute(save_folder,
                runhistory_location,
                configspace_location,
                modus='ablation',
                seed=1):
        with open(runhistory_location, 'r') as runhistory_filep:
            runhistory = json.load(runhistory_filep)

        # create scenario file
        scenario_dict = {
            'run_obj': 'quality',
            'deterministic': 1,
            'paramfile': configspace_location
        }

        trajectory_lines = openmlpimp.utils.runhistory_to_trajectory(
            runhistory, maximize=True)
        if len(trajectory_lines) != 1:
            raise ValueError('trajectory file should containexactly one line.')

        traj_file = tempfile.NamedTemporaryFile('w', delete=False)
        for line in trajectory_lines:
            json.dump(line, traj_file)
            traj_file.write("\n")
        traj_file.close()

        num_params = len(trajectory_lines[0]['incumbent'])
        importance = Importance(scenario_dict,
                                runhistory_file=runhistory_location,
                                parameters_to_evaluate=num_params,
                                traj_file=traj_file.name,
                                seed=seed,
                                save_folder=save_folder)

        try:
            os.makedirs(save_folder)
        except FileExistsError:
            pass

        for i in range(5):
            try:
                result = importance.evaluate_scenario(modus)
                filename = 'pimp_values_%s.json' % modus
                with open(os.path.join(save_folder, filename),
                          'w') as out_file:
                    json.dump(result,
                              out_file,
                              sort_keys=True,
                              indent=4,
                              separators=(',', ': '))
                importance.plot_results(name=os.path.join(save_folder, modus),
                                        show=False)
                return save_folder + "/" + filename
            except ZeroDivisionError as e:
                pass
        raise e
Exemplo n.º 2
0
class PIMP:
    def __init__(self,
                 scenario: Scenario,
                 smac: Union[SMAC, None] = None,
                 mode: str = 'all',
                 X: Union[None, List[list], np.ndarray] = None,
                 y: Union[None, List[list], np.ndarray] = None,
                 numParams: int = -1,
                 impute: bool = False,
                 seed: int = 12345,
                 run: bool = False,
                 max_sample_size: int = -1,
                 fanova_cut_at_default: bool = False,
                 fANOVA_pairwise: bool = True,
                 forwardsel_feat_imp: bool = False,
                 incn_quant_var: bool = True,
                 marginalize_away_instances: bool = False,
                 save_folder: str = 'PIMP'):
        """
        Interface to be used with SMAC or with X and y matrices.
        :param scenario: The scenario object, that knows the configuration space.
        :param smac: The smac object that keeps all the run-data
        :param mode: The mode with which to run PIMP [ablation, fanova, all, forward-selection]
        :param X: Numpy Array that contains parameter arrays
        :param y: Numpy array that contains the corresponding performance values
        :param numParams: The number of parameters to evaluate
        :param impute: Flag to decide if censored data gets imputed or not
        :param seed: The random seed
        :param run: Flag to immediately compute the importance values after this setup or not.
        """
        self.scenario = scenario
        self.imp = None
        self.mode = mode
        self.save_folder = save_folder
        if not os.path.exists(self.save_folder): os.mkdir(self.save_folder)
        if smac is not None:
            self.imp = Importance(scenario=scenario,
                                  runhistory=smac.runhistory,
                                  incumbent=smac.solver.incumbent,
                                  seed=seed,
                                  parameters_to_evaluate=numParams,
                                  save_folder='PIMP',
                                  impute_censored=impute,
                                  max_sample_size=max_sample_size,
                                  fANOVA_cut_at_default=fanova_cut_at_default,
                                  fANOVA_pairwise=fANOVA_pairwise,
                                  forwardsel_feat_imp=forwardsel_feat_imp,
                                  incn_quant_var=incn_quant_var,
                                  preprocess=marginalize_away_instances)
        elif X is not None and y is not None:
            X = np.array(X)
            y = np.array(y)
            runHist = RunHistory(average_cost)
            if X.shape[0] != y.shape[0]:
                raise Exception('Number of samples in X and y dont match!')
            n_params = len(scenario.cs.get_hyperparameters())
            feats = None
            if X.shape[1] > n_params:
                feats = X[:, n_params:]
                assert feats.shape[1] == scenario.feature_array.shape[1]
                X = X[:, :n_params]

            for p in range(X.shape[1]):  # Normalize the data to fit into [0, 1]
                _min, _max = np.min(X[:, p]), np.max(X[:, p])
                if _min < 0. or 1 < _max:  # if it is not already normalized
                    for id, v in enumerate(X[:, p]):
                        X[id, p] = (v - _min) / (_max - _min)

            # Add everything to a runhistory such that PIMP can work with it
            for x, feat, y_val in zip(X, feats if feats is not None else X, y):
                id = None
                for inst in scenario.feature_dict:  # determine on which instance a configuration was run
                    if np.all(scenario.feature_dict[inst] == feat):
                        id = inst
                        break
                runHist.add(Configuration(scenario.cs, vector=x), y_val, 0, StatusType.SUCCESS, id)
            self.X = X
            self.y = y

            best_ = None  # Determine incumbent according to the best mean cost in the runhistory
            for config in runHist.config_ids:
                inst_seed_pairs = runHist.get_runs_for_config(config)
                all_ = []
                for inst, seed in inst_seed_pairs:
                    rk = RunKey(runHist.config_ids[config], inst, seed)
                    all_.append(runHist.data[rk].cost)
                mean = np.mean(all_)
                if best_ is None or best_[0] > mean:
                    best_ = (mean, config)
            incumbent = best_[1]
            self.imp = Importance(scenario=scenario,
                                  runhistory=runHist,
                                  seed=seed,
                                  parameters_to_evaluate=numParams,
                                  save_folder=self.save_folder,
                                  impute_censored=impute,
                                  incumbent=incumbent,
                                  fANOVA_cut_at_default=fanova_cut_at_default,
                                  fANOVA_pairwise=fANOVA_pairwise,
                                  forwardsel_feat_imp=forwardsel_feat_imp,
                                  incn_quant_var=incn_quant_var,
                                  preprocess=marginalize_away_instances
                                  )
        else:
            raise Exception('Neither X and y matrices nor a SMAC object were specified to compute the importance '
                            'values from!')

        if run:
            self.compute_importances()

    def compute_importances(self):
        if self.mode == 'all':
            self.mode = ['ablation',
                         'forward-selection',
                         'fanova',
                         'incneighbor']
        elif not isinstance(self.mode, list):
            self.mode = [self.mode]
        result = self.imp.evaluate_scenario(self.mode, save_folder=self.save_folder)
        return result

    def plot_results(self, result: Union[List[Dict[str, float]], Dict[str, float]], save_table: bool = True,
                     show=False):
        save_folder = self.save_folder
        if self.mode == 'all':
            with open(os.path.join(save_folder, 'pimp_values_%s.json' % self.mode), 'w') as out_file:
                json.dump(result[0], out_file, sort_keys=True, indent=4, separators=(',', ': '))
            self.imp.plot_results(list(map(lambda x: os.path.join(save_folder, x.name.lower()), result[1])),
                                  result[1], show=show)
            if save_table:
                self.imp.table_for_comparison(evaluators=result[1], name=os.path.join(
                    save_folder, 'pimp_table_%s.tex' % self.mode), style='latex')
            else:
                self.imp.table_for_comparison(evaluators=result[1], style='cmd')
        else:
            with open(os.path.join(save_folder, 'pimp_values_%s.json' % self.mode), 'w') as out_file:
                json.dump(result[0], out_file, sort_keys=True, indent=4, separators=(',', ': '))
            if isinstance(self.mode, list):
                self.imp.plot_results(name=os.path.join(save_folder, 'all'), show=show)
            else:
                self.imp.plot_results(name=os.path.join(save_folder, self.mode), show=show)
Exemplo n.º 3
0
                  indent=4,
                  separators=(',', ': '))
    result = importance.evaluate_scenario(args.modus, save_folder=save_folder)

    if args.modus == 'all':
        with open(
                os.path.join(save_folder, 'pimp_values_%s.json' % args.modus),
                'w') as out_file:
            json.dump(result[0],
                      out_file,
                      sort_keys=True,
                      indent=4,
                      separators=(',', ': '))
        importance.plot_results(list(
            map(lambda x: os.path.join(save_folder, x.name.lower()),
                result[1])),
                                result[1],
                                show=False)
        if args.table:
            importance.table_for_comparison(
                evaluators=result[1],
                name=os.path.join(save_folder,
                                  'pimp_table_%s.tex' % args.modus),
                style='latex')
        else:
            importance.table_for_comparison(evaluators=result[1], style='cmd')
    else:
        with open(
                os.path.join(save_folder,
                             'pimp_values_%s.json' % args.modus[0]),
                'w') as out_file:
Exemplo n.º 4
0
def cmd_line_call():
    """
    Main Parameter importance script.
    """
    cmd_reader = CMDs()
    args, misc_ = cmd_reader.read_cmd()  # read cmd args
    logging.basicConfig(level=args.verbose_level)
    ts = time.time()
    ts = datetime.datetime.fromtimestamp(ts).strftime('%Y_%m_%d_%H:%M:%S')
    if not args.out_folder:
        save_folder = 'PIMP_%s_%s' % (args.modus, ts)
    else:
        if os.path.exists(os.path.abspath(args.out_folder)) or os.path.exists(
                os.path.abspath(args.out_folder + '_%s' % args.modus)):
            save_folder = args.out_folder + '_%s_%s' % (args.modus, ts)
        else:
            save_folder = args.out_folder + '_%s' % args.modus

    importance = Importance(
        scenario_file=args.scenario_file,
        runhistory_file=args.history,
        parameters_to_evaluate=args.num_params,
        traj_file=args.trajectory,
        seed=args.seed,
        save_folder=save_folder,
        impute_censored=args.impute,
        max_sample_size=args.max_sample_size)  # create importance object
    with open(os.path.join(save_folder, 'pimp_args.json'), 'w') as out_file:
        json.dump(args.__dict__,
                  out_file,
                  sort_keys=True,
                  indent=4,
                  separators=(',', ': '))
    result = importance.evaluate_scenario(args.modus, sort_by=args.order)

    if args.modus == 'all':
        with open(
                os.path.join(save_folder, 'pimp_values_%s.json' % args.modus),
                'w') as out_file:
            json.dump(result[0],
                      out_file,
                      sort_keys=True,
                      indent=4,
                      separators=(',', ': '))
        importance.plot_results(list(
            map(lambda x: os.path.join(save_folder, x.name.lower()),
                result[1])),
                                result[1],
                                show=False)
        if args.table:
            importance.table_for_comparison(
                evaluators=result[1],
                name=os.path.join(save_folder,
                                  'pimp_table_%s.tex' % args.modus),
                style='latex')
        else:
            importance.table_for_comparison(evaluators=result[1], style='cmd')
    else:
        with open(
                os.path.join(save_folder, 'pimp_values_%s.json' % args.modus),
                'w') as out_file:
            json.dump(result,
                      out_file,
                      sort_keys=True,
                      indent=4,
                      separators=(',', ': '))

        importance.plot_results(name=os.path.join(save_folder, args.modus),
                                show=False)
Exemplo n.º 5
0
from pimp.importance.importance import Importance
from pimp.utils.io.cmd_reader import CMDs

__author__ = "Andre Biedenkapp"
__copyright__ = "Copyright 2016, ML4AAD"
__license__ = "3-clause BSD"
__maintainer__ = "Andre Biedenkapp"
__email__ = "*****@*****.**"

if __name__ == '__main__':
    """
    Main Parameter importance script.
    """
    cmd_reader = CMDs()
    args, misc_ = cmd_reader.read_cmd()  # read cmd args
    logging.basicConfig(level=args.verbose_level)
    importance = Importance(args.scenario_file,
                            args.history,
                            parameters_to_evaluate=args.num_params,
                            traj_file=args.trajectory,
                            seed=args.seed)  # create importance object
    importance_value_dict = importance.evaluate_scenario(args.modus)

    ts = time.time()
    ts = datetime.datetime.fromtimestamp(ts).strftime('%Y_%m_%d_%H:%M:%S')
    with open('pimp_values_%s_%s.json' % (args.modus, ts), 'w') as out_file:
        json.dump(importance_value_dict, out_file)

    importance.plot_results(name=args.modus)