Exemplo n.º 1
0
    def test_options(self):

        # Test setting acceptance rate
        x0 = self.real_parameters
        mcmc = pints.DramACMC(x0)
        self.assertRaises(RuntimeError, mcmc.tell, 0.0)
        x0 = self.real_parameters
        mcmc = pints.DramACMC(x0)
        mcmc.ask()
        self.assertRaises(ValueError, mcmc.tell, -float('inf'))

        self.assertNotEqual(mcmc.target_acceptance_rate(), 0.5)
        mcmc.set_target_acceptance_rate(0.5)
        self.assertEqual(mcmc.target_acceptance_rate(), 0.5)
        mcmc.set_target_acceptance_rate(1)
        self.assertRaises(ValueError, mcmc.set_target_acceptance_rate, 0)
        self.assertRaises(ValueError, mcmc.set_target_acceptance_rate, -1e-6)
        self.assertRaises(ValueError, mcmc.set_target_acceptance_rate, 1.00001)

        # test hyperparameter setters and getters
        self.assertEqual(mcmc.n_hyper_parameters(), 3)
        self.assertRaises(ValueError, mcmc.set_hyper_parameters, [-0.1, 1, 3])
        self.assertRaises(ValueError, mcmc.set_hyper_parameters, [0.5, 0, 3])
        self.assertRaises(ValueError, mcmc.set_hyper_parameters, [0.5, 1, -1])
        mcmc.set_hyper_parameters([0.1, 4, 3.5])
        self.assertEqual(mcmc.eta(), 0.1)
        self.assertEqual(mcmc.n_kernels(), 4)
        self.assertEqual(mcmc.upper_scale(), 3.5)
        mcmc.ask()
        mcmc.set_sigma_scale()
        scale = mcmc.sigma_scale()
        a_min = np.log10(1)
        a_max = np.log10(3.5)
        scale1 = 10**np.linspace(a_min, a_max, 4)
        scale1 = scale1[::-1]
        self.assertTrue(np.array_equal(scale, scale1))

        self.assertEqual(mcmc.name(),
                         ('Delayed Rejection Adaptive Metropolis (Dram) MCMC'))
Exemplo n.º 2
0
    def test_options(self):

        # Test setting acceptance rate
        x0 = self.real_parameters
        mcmc = pints.DramACMC(x0)
        self.assertRaises(RuntimeError, mcmc.tell, 0.0)
        x0 = self.real_parameters
        mcmc = pints.DramACMC(x0)
        mcmc.ask()
        self.assertRaises(ValueError, mcmc.tell, -float('inf'))

        self.assertNotEqual(mcmc.target_acceptance_rate(), 0.5)
        mcmc.set_target_acceptance_rate(0.5)
        self.assertEqual(mcmc.target_acceptance_rate(), 0.5)
        mcmc.set_target_acceptance_rate(1)
        self.assertRaises(ValueError, mcmc.set_target_acceptance_rate, 0)
        self.assertRaises(ValueError, mcmc.set_target_acceptance_rate, -1e-6)
        self.assertRaises(ValueError, mcmc.set_target_acceptance_rate, 1.00001)

        # test hyperparameter setters and getters
        self.assertEqual(mcmc.n_hyper_parameters(), 3)
        self.assertRaises(ValueError, mcmc.set_hyper_parameters, [-0.1, 1, 3])
        self.assertRaises(ValueError, mcmc.set_hyper_parameters, [0.5, 0, 3])
        self.assertRaises(ValueError, mcmc.set_hyper_parameters, [0.5, 1, -1])
        mcmc.set_hyper_parameters([0.1, 4, 3])
        self.assertEqual(mcmc.eta(), 0.1)
        mcmc.ask()
        scale1 = [2, 3]
        mcmc.set_sigma_scale(scale1)
        scale = mcmc.sigma_scale()
        self.assertTrue(np.array_equal(scale, scale1))

        self.assertRaisesRegex(ValueError, 'must be of length 2',
                               mcmc.set_sigma_scale, [1])

        self.assertEqual(mcmc.name(),
                         'Delayed Rejection Adaptive Metropolis (Dram) MCMC')
Exemplo n.º 3
0
    def test_method(self):

        # Create mcmc
        x0 = self.real_parameters * 1.1
        mcmc = pints.DramACMC(x0)

        # Configure
        mcmc.set_target_acceptance_rate(0.3)
        mcmc.set_initial_phase(True)

        # Perform short run
        rate = []
        chain = []
        for i in range(100):
            x = mcmc.ask()
            fx = self.log_posterior(x)
            sample = mcmc.tell(fx)
            while sample is None:
                x = mcmc.ask()
                fx = self.log_posterior(x)
                sample = mcmc.tell(fx)
            if i == 20:
                mcmc.set_initial_phase(False)
            if i >= 50:
                chain.append(sample)
            rate.append(mcmc.acceptance_rate())
            if np.all(sample == x):
                self.assertEqual(mcmc.current_log_pdf(), fx)

        chain = np.array(chain)
        rate = np.array(rate)
        self.assertEqual(chain.shape[0], 50)
        self.assertEqual(chain.shape[1], len(x0))
        self.assertEqual(rate.shape[0], 100)

        # Test with more kernels
        x0 = self.real_parameters * 1.1
        mcmc = pints.DramACMC(x0)

        # Configure
        mcmc.set_n_kernels(4)

        # Perform short run
        rate = []
        chain = []
        for i in range(100):
            x = mcmc.ask()
            fx = self.log_posterior(x)
            sample = mcmc.tell(fx)
            while sample is None:
                x = mcmc.ask()
                fx = self.log_posterior(x)
                sample = mcmc.tell(fx)
            if i == 20:
                mcmc.set_initial_phase(False)
            if i >= 50:
                chain.append(sample)
            rate.append(mcmc.acceptance_rate())
            if np.all(sample == x):
                self.assertEqual(mcmc.current_log_pdf(), fx)

        chain = np.array(chain)
        rate = np.array(rate)
        self.assertEqual(chain.shape[0], 50)
        self.assertEqual(chain.shape[1], len(x0))
        self.assertEqual(rate.shape[0], 100)
Exemplo n.º 4
0
    def test_method(self):

        # Create mcmc
        x0 = self.real_parameters * 1.1
        mcmc = pints.DramACMC(x0)

        # Configure
        mcmc.set_target_acceptance_rate(0.3)
        mcmc.set_initial_phase(True)

        # Perform short run
        rate = []
        chain = []
        for i in range(100):
            x = mcmc.ask()
            fx = self.log_posterior(x)
            reply = mcmc.tell(fx)
            while reply is None:
                x = mcmc.ask()
                fx = self.log_posterior(x)
                reply = mcmc.tell(fx)
            y, fy, ac = reply
            if i == 20:
                mcmc.set_initial_phase(False)
            if i >= 50:
                chain.append(y)
            rate.append(mcmc.acceptance_rate())
            self.assertTrue(isinstance(ac, bool))
            if ac:
                self.assertTrue(np.all(x == y))
                self.assertEqual(fx, fy)

        chain = np.array(chain)
        rate = np.array(rate)
        self.assertEqual(chain.shape[0], 50)
        self.assertEqual(chain.shape[1], len(x0))
        self.assertEqual(rate.shape[0], 100)

        # Test with more kernels
        x0 = self.real_parameters * 1.1
        mcmc = pints.DramACMC(x0)

        # Configure
        mcmc.set_n_kernels(4)

        # Perform short run
        rate = []
        chain = []
        for i in range(100):
            x = mcmc.ask()
            fx = self.log_posterior(x)
            reply = mcmc.tell(fx)
            while reply is None:
                x = mcmc.ask()
                fx = self.log_posterior(x)
                reply = mcmc.tell(fx)
            y, fy, ac = reply
            if i == 20:
                mcmc.set_initial_phase(False)
            if i >= 50:
                chain.append(y)
            rate.append(mcmc.acceptance_rate())
            self.assertTrue(isinstance(ac, bool))
            if ac:
                self.assertTrue(np.all(x == y))
                self.assertEqual(fx, fy)

        chain = np.array(chain)
        rate = np.array(rate)
        self.assertEqual(chain.shape[0], 50)
        self.assertEqual(chain.shape[1], len(x0))
        self.assertEqual(rate.shape[0], 100)