Exemplo n.º 1
0
def pipeline(scan,
             label,
             obstacle_lst,
             verbose=False,
             OBBoxes=False,
             exec_time=False,
             **params):
    """ ROI filtering """
    ##########################################################################
    start_time = datetime.now()
    pcloud = pd.DataFrame(
        np.concatenate((scan, label.reshape(len(label), 1)), axis=1),
        columns=["x", "y", "z", "seg_id"],
    )
    pcloud = common.roi_filter(
        pcloud,
        min_x=params["roi_x_min"],
        max_x=params["roi_x_max"],
        min_y=params["roi_y_min"],
        max_y=params["roi_y_max"],
        min_z=params["roi_z_min"],
        max_z=params["roi_z_max"],
        verbose=False,
    )
    roi_time = (datetime.now() - start_time).total_seconds()
    ##########################################################################
    """ Obstacles filtering """
    ##########################################################################
    start_time = datetime.now()
    pcloud = common.obstacle_filter(pcloud,
                                    obstacle_lst,
                                    proc_labels=True,
                                    verbose=False)
    obstacle_time = (datetime.now() - start_time).total_seconds()
    ##########################################################################

    if len(pcloud) > 200:

        # Getting voxel grid
        start_time = datetime.now()
        voxel_time = (datetime.now() - start_time).total_seconds()
        """ Сlustering obstacles """
        #######################################################################
        start_time = datetime.now()
        clusterer = DBSCAN(
            eps=params["eps"],
            min_samples=params["min_samples"],
            algorithm="auto",
            leaf_size=params["leaf_size"],
            n_jobs=-1,
        )
        clusterer.fit(pcloud[["x", "y", "z"]])
        pcloud["cluster_id"] = clusterer.labels_
        cluster_time = (datetime.now() - start_time).total_seconds()
        #######################################################################
        """ Getting bounding boxes coord """
        #######################################################################
        start_time = datetime.now()
        pcloud["norm"] = np.sqrt(
            np.square(pcloud[["x", "y", "z"]]).sum(axis=1))
        cluster_data = pd.DataFrame.from_dict({
            "x": [],
            "y": [],
            "z": [],
            "cluster_id": []
        })
        clusters = []
        for _id in sorted(pcloud["cluster_id"].unique()):
            if _id == -1 or not 50 < len(
                    pcloud[pcloud["cluster_id"] == _id]) < 5000:
                continue
            tcluster = pcloud[pcloud["cluster_id"] == _id]
            tcluster = common.outlier_filter(tcluster, verbose=False)
            cluster_data = cluster_data.append(tcluster)
            if OBBoxes:
                obb = common.get_OBB(tcluster[["x", "y", "z"]])
                clusters.append(obb)
        if not OBBoxes:
            clusters = (cluster_data.groupby(["cluster_id"]).agg({
                "x": ["min", "max"],
                "y": ["min", "max"],
                "z": ["min", "max"]
            }).values)
        bb_time = (datetime.now() - start_time).total_seconds()
        #######################################################################
    else:
        clusters, cluster_data = np.empty((0, 0)), np.empty((0, 0))
        voxel_time, cluster_time, bb_time = 0, 0, 0

    if verbose:
        print("Execution time:")
        print("\n - ROI filtering: {:.5f}s".format(roi_time))
        print("\n - Filtering obstacles: {:.5f}s".format(obstacle_time))
        print("\n - Voxel grid: {:.5f}s".format(voxel_time))
        print("\n - Clustering: {:.5f}s".format(cluster_time))
        print("\n - Min-max cluster points: {:.5f}s \n".format(bb_time))

    if exec_time:
        return (
            clusters,
            cluster_data,
            {
                "roi_time": roi_time,
                "filter_obstacle_time": obstacle_time,
                "voxel_grid_time": voxel_time,
                "clustering_time": cluster_time,
                "outlier_filter_bbox_time": bb_time,
            },
        )
    else:
        return clusters, cluster_data
Exemplo n.º 2
0
def pipeline_optimized_pcl(scan,
                           label,
                           obstacle_lst,
                           verbose=False,
                           exec_time=False,
                           **params):
    # get segment id
    start_time = datetime.now()
    pcloud = pd.DataFrame(np.concatenate((scan, label.reshape(len(label), 1)),
                                         axis=1),
                          columns=['x', 'y', 'z', 'seg_id'])

    pcloud = common.roi_filter(pcloud,
                               min_x=params['roi_x_min'],
                               max_x=params['roi_x_max'],
                               min_y=params['roi_y_min'],
                               max_y=params['roi_y_max'],
                               min_z=params['roi_z_min'],
                               max_z=params['roi_z_max'],
                               verbose=False)

    pcloud = common.obstacle_filter(pcloud,
                                    obstacle_lst,
                                    proc_labels=True,
                                    verbose=False)
    pcloud = pcloud.drop(['seg_id'], axis=1)
    pcloud = pcloud.drop(['camera'], axis=1)
    obstacle_time = datetime.now() - start_time
    if (len(pcloud.index) > 0):
        start_time = datetime.now()
        pcloud_pcl = pcl.PointCloud()
        pcloud_pcl.from_array(pcloud.to_numpy(dtype=np.float32))
        convert_time = datetime.now() - start_time

        # get voxel grid
        start_time = datetime.now()
        voxelgrid_id = pcl_utils.voxel_filter(
            pcloud_pcl,
            [params['x_voxels'], params['y_voxels'], params['z_voxels']])
        #voxelgrid_id = pcloud_pcl
        voxel_time = datetime.now() - start_time

        # ROI filter
        start_time = datetime.now()
        pcloud_roi = pcl_utils.roi_filter(
            voxelgrid_id,
            [params['roi_x_min'], params['roi_x_max']],
            [params['roi_y_min'], params['roi_y_max']],
            [params['roi_z_min'], params['roi_z_max']],
        )
        roi_time = datetime.now() - start_time

        # get cluster
        start_time = datetime.now()
        cluster_data = pcloud_roi.extract([], negative=True)
        cluster_indices = pcl_utils.clustering(cluster_data,
                                               params['tol_distance'],
                                               params['min_cluster_size'],
                                               150000)
        clustering_time = datetime.now() - start_time

        # get bboxes
        start_time = datetime.now()
        box_min_max_list, _ = pcl_utils.get_cluster_box_list(
            cluster_indices,
            cluster_data,
            radius_search=params['radius_search'],
            min_neighbors_in_radius=params['min_neighbors_in_radius'])
        bbox_time = datetime.now() - start_time
    else:
        box_min_max_list, cluster_data = np.empty((0, 0)), np.empty((0, 0))
        roi_time, obstacle_time, voxel_time, clustering_time, bbox_time = 0, 0, 0, 0, 0

    if verbose:
        print('Execution time:')
        print('\n - ROI filtering: {:.5f} s'.format(roi_time.total_seconds()))
        print('\n - Filtering obstacles: {:.5f} s'.format(
            obstacle_time.total_seconds()))
        print('\n - Voxel grid: {:.5f} s'.format(voxel_time.total_seconds()))
        print('\n - Clustering: {:.5f} s'.format(
            clustering_time.total_seconds()))
        print('\n - Min-max cluster points: {:.5f} s \n'.format(
            bbox_time.total_seconds()))

    if exec_time:
        return box_min_max_list, cluster_data, {
            'roi_time': roi_time.total_seconds(),
            'filter_obstacle_time': obstacle_time.total_seconds(),
            'voxel_grid_time': voxel_time.total_seconds(),
            'clustering_time': clustering_time.total_seconds(),
            'outlier_filter_bbox_time': bbox_time.total_seconds(),
            'convert_time': convert_time.total_seconds()
        }
    else:
        return box_min_max_list, cluster_data
Exemplo n.º 3
0
def pipeline_optimized_pcl(scan,
                           label,
                           obstacle_lst,
                           verbose=False,
                           exec_time=False,
                           **params):
    # get segment id
    start_time = datetime.now()
    pcloud = pd.DataFrame(
        np.concatenate((scan, label.reshape(len(label), 1)), axis=1),
        columns=["x", "y", "z", "seg_id"],
    )

    pcloud = common.roi_filter(
        pcloud,
        min_x=params["roi_x_min"],
        max_x=params["roi_x_max"],
        min_y=params["roi_y_min"],
        max_y=params["roi_y_max"],
        min_z=params["roi_z_min"],
        max_z=params["roi_z_max"],
        verbose=False,
    )

    pcloud = common.obstacle_filter(pcloud,
                                    obstacle_lst,
                                    proc_labels=True,
                                    verbose=False)
    pcloud = pcloud.drop(["seg_id"], axis=1)
    pcloud = pcloud.drop(["camera"], axis=1)
    obstacle_time = datetime.now() - start_time
    if len(pcloud.index) > 0:
        start_time = datetime.now()
        pcloud_pcl = pcl.PointCloud()
        pcloud_pcl.from_array(pcloud.to_numpy(dtype=np.float32))
        convert_time = datetime.now() - start_time

        # get voxel grid
        start_time = datetime.now()
        voxelgrid_id = pcl_utils.voxel_filter(
            pcloud_pcl,
            [params["x_voxels"], params["y_voxels"], params["z_voxels"]])
        # voxelgrid_id = pcloud_pcl
        voxel_time = datetime.now() - start_time

        # ROI filter
        start_time = datetime.now()
        pcloud_roi = pcl_utils.roi_filter(
            voxelgrid_id,
            [params["roi_x_min"], params["roi_x_max"]],
            [params["roi_y_min"], params["roi_y_max"]],
            [params["roi_z_min"], params["roi_z_max"]],
        )
        roi_time = datetime.now() - start_time

        # get cluster
        start_time = datetime.now()
        cluster_data = pcloud_roi.extract([], negative=True)
        cluster_indices = pcl_utils.clustering(cluster_data,
                                               params["tol_distance"],
                                               params["min_cluster_size"],
                                               150000)
        clustering_time = datetime.now() - start_time

        # get bboxes
        start_time = datetime.now()
        box_min_max_list, _ = pcl_utils.get_cluster_box_list(
            cluster_indices,
            cluster_data,
            radius_search=params["radius_search"],
            min_neighbors_in_radius=params["min_neighbors_in_radius"],
        )
        bbox_time = datetime.now() - start_time
    else:
        box_min_max_list, cluster_data = np.empty((0, 0)), np.empty((0, 0))
        roi_time, obstacle_time, voxel_time = 0, 0, 0
        clustering_time, bbox_time = 0, 0

    if verbose:
        print("Execution time:")
        print("\n-ROI filtering: {:.5f}s".format(roi_time.total_seconds()))
        print("\n-Filtering obstacles: {:.5f}s".format(
            obstacle_time.total_seconds()))
        print("\n-Voxel grid: {:.5f}s".format(voxel_time.total_seconds()))
        print("\n-Clustering: {:.5f}s".format(clustering_time.total_seconds()))
        print("\n-Min-max cluster points: {:.5f} s \n".format(
            bbox_time.total_seconds()))

    if exec_time:
        return (
            box_min_max_list,
            cluster_data,
            {
                "roi_time": roi_time.total_seconds(),
                "filter_obstacle_time": obstacle_time.total_seconds(),
                "voxel_grid_time": voxel_time.total_seconds(),
                "clustering_time": clustering_time.total_seconds(),
                "outlier_filter_bbox_time": bbox_time.total_seconds(),
                "convert_time": convert_time.total_seconds(),
            },
        )
    else:
        return box_min_max_list, cluster_data
Exemplo n.º 4
0
def pipeline(scan, label, obstacle_lst, verbose=False, OBBoxes=False, exec_time=False,  **params):


    """ ROI filtering """
    ##################################################################################################
    start_time = datetime.now()
    pcloud = pd.DataFrame(np.concatenate((scan, label.reshape(len(label), 1)), axis=1),
                                                    columns=['x', 'y', 'z', 'seg_id'])
    pcloud = common.roi_filter(pcloud,  min_x=params['roi_x_min'], max_x=params['roi_x_max'],
                                                min_y=params['roi_y_min'], max_y=params['roi_y_max'],
                                                min_z=params['roi_z_min'], max_z=params['roi_z_max'],
                                                verbose=False)
    roi_time = (datetime.now() - start_time).total_seconds()
    ###################################################################################################

    """ Obstacles filtering """
    ###################################################################################################
    start_time = datetime.now()
    pcloud = common.obstacle_filter(pcloud, obstacle_lst, proc_labels=params['proc_labels'], verbose=False)
    obstacle_time = (datetime.now() - start_time).total_seconds()
    ###################################################################################################

    if len(pcloud) > 200:

        # Getting voxel grid
        start_time = datetime.now()
        voxel_time = (datetime.now() - start_time).total_seconds()

        """ Сlustering obstacles """
        ###############################################################################################
        start_time = datetime.now()
        clusterer = DBSCAN(eps=params['eps'], min_samples=params['min_samples'],
                           algorithm='auto', leaf_size=params['leaf_size'], n_jobs=-1)
        clusterer.fit(pcloud[['x', 'y', 'z']])
        pcloud['cluster_id'] = clusterer.labels_
        cluster_time = (datetime.now() - start_time).total_seconds()
        ###############################################################################################

        """ Getting bounding boxes coord """
        ###############################################################################################
        start_time = datetime.now()
        pcloud['norm'] = np.sqrt(np.square(pcloud[['x', 'y', 'z']]).sum(axis=1))
        cluster_data = pd.DataFrame.from_dict({'x': [], 'y': [], 'z': [],'cluster_id': []})
        clusters = []
        for _id in pcloud['cluster_id'].unique():
            if _id == -1 or len(pcloud[pcloud['cluster_id'] == _id]) < 100 or len(pcloud[pcloud['cluster_id'] == _id]) > 2500:
                continue
            tcluster = common.outlier_filter(pcloud[pcloud['cluster_id'] == _id], verbose=False)
            cluster_data = cluster_data.append(tcluster)
            if OBBoxes:
                obb = OBB.build_from_points(tcluster[['x', 'y', 'z']].values)
                clusters.append([x.tolist() for x in obb.points])
        if not OBBoxes:
            clusters = cluster_data.groupby(['cluster_id']).agg({ 'x': ['min', 'max'],
                                                                  'y': ['min', 'max'],
                                                                  'z': ['min', 'max'] }).values

        bb_time = (datetime.now() - start_time).total_seconds()
        ###############################################################################################
    else:
        clusters, cluster_data = np.empty((0, 0)), np.empty((0, 0))
        voxel_time, cluster_time, bb_time = 0, 0, 0

    if verbose:
        print('Execution time:')
        print('\n - ROI filtering: {:.5f}s'.format(roi_time))
        print('\n - Filtering obstacles: {:.5f}s'.format(obstacle_time))
        print('\n - Voxel grid: {:.5f}s'.format(voxel_time))
        print('\n - Clustering: {:.5f}s'.format(cluster_time))
        print('\n - Min-max cluster points: {:.5f}s \n'.format(bb_time))

    if exec_time:
        return clusters, cluster_data, {'roi_time': roi_time,
                                        'filter_obstacle_time': obstacle_time,
                                        'voxel_grid_time': voxel_time,
                                        'clustering_time': cluster_time,
                                        'outlier_filter_bbox_time': bb_time}
    else:
        return clusters, cluster_data
 def test_obstacle_filter_3(self):
     pcloud = get_pcloud(scan_lst[2], label_lst[2])
     cloud = common.obstacle_filter(pcloud, obstacle_lst, proc_labels=False)
     seg_lst = list(cloud['seg_id'].unique())
     for seg in seg_lst:
         assert seg in list(obstacle_lst.keys())