Exemplo n.º 1
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    guest_train_data = {"name": "motor_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "motor_hetero_host", "namespace": f"experiment{namespace}"}

    pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0")
    data_transform_0.get_party_instance(
        role='guest',
        party_id=guest).component_param(
        with_label=True,
        label_name="motor_speed",
        label_type="float",
        output_format="dense")
    data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False)

    intersection_0 = Intersection(name="intersection_0", only_output_key=False)
    hetero_linr_0 = HeteroLinR(name="hetero_linr_0", penalty="L2", optimizer="sgd", tol=0.001,
                               alpha=0.01, max_iter=5, early_stop="weight_diff", batch_size=-1,
                               learning_rate=0.15, decay=0.0, decay_sqrt=False,
                               callback_param={"callbacks": ["ModelCheckpoint"]},
                               init_param={"init_method": "zeros"},
                               floating_point_precision=23)

    evaluation_0 = Evaluation(name="evaluation_0", eval_type="regression", pos_label=1)

    hetero_linr_1 = HeteroLinR(name="hetero_linr_1", max_iter=15,
                               penalty="L2", optimizer="sgd", tol=0.001,
                               alpha=0.01, early_stop="weight_diff", batch_size=-1,
                               learning_rate=0.15, decay=0.0, decay_sqrt=False,
                               floating_point_precision=23
                               )

    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
    pipeline.add_component(hetero_linr_0, data=Data(train_data=intersection_0.output.data))
    pipeline.add_component(hetero_linr_1, data=Data(train_data=intersection_0.output.data),
                           model=Model(hetero_linr_0.output.model))
    pipeline.add_component(evaluation_0, data=Data(data=hetero_linr_1.output.data))

    pipeline.compile()

    pipeline.fit()
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]
    backend = config.backend
    work_mode = config.work_mode

    guest_train_data = {"name": "motor_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "motor_hetero_host", "namespace": f"experiment{namespace}"}

    pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)

    dataio_0 = DataIO(name="dataio_0")
    dataio_0.get_party_instance(role='guest', party_id=guest).component_param(with_label=True, label_name="motor_speed",
                                                                              label_type="float", output_format="dense")
    dataio_0.get_party_instance(role='host', party_id=host).component_param(with_label=False)

    intersection_0 = Intersection(name="intersection_0")
    hetero_data_split_0 = HeteroDataSplit(name="hetero_data_split_0", stratified=True,
                                          test_size=0.3, validate_size=0.2, split_points=[0.0, 0.2])
    hetero_linr_0 = HeteroLinR(name="hetero_linr_0", penalty="L2", optimizer="sgd", tol=0.001,
                               alpha=0.01, max_iter=10, early_stop="weight_diff", batch_size=-1,
                               learning_rate=0.15, decay=0.0, decay_sqrt=False,
                               init_param={"init_method": "zeros"},
                               encrypted_mode_calculator_param={"mode": "fast"})
    hetero_linr_1 = HeteroLinR()

    pipeline.add_component(reader_0)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0, data=Data(data=dataio_0.output.data))
    pipeline.add_component(hetero_data_split_0, data=Data(data=intersection_0.output.data))
    pipeline.add_component(hetero_linr_0, data=Data(train_data=hetero_data_split_0.output.data.train_data,
                                                    validate_data=hetero_data_split_0.output.data.validate_data))
    pipeline.add_component(hetero_linr_1, data=Data(test_data=hetero_data_split_0.output.data.test_data),
                           model=Model(model=hetero_linr_0.output.model))

    pipeline.compile()

    job_parameters = JobParameters(backend=backend, work_mode=work_mode)
    pipeline.fit(job_parameters)
Exemplo n.º 3
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    hosts = parties.host
    arbiter = parties.arbiter[0]

    guest_train_data = {"name": "motor_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = [{"name": "motor_hetero_host", "namespace": f"experiment{namespace}"},
                       {"name": "motor_hetero_host", "namespace": f"experiment{namespace}"}]


    pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=hosts, arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=hosts[0]).component_param(table=host_train_data[0])
    reader_0.get_party_instance(role='host', party_id=hosts[1]).component_param(table=host_train_data[1])

    data_transform_0 = DataTransform(name="data_transform_0")
    data_transform_0.get_party_instance(role='guest', party_id=guest).component_param(with_label=True, label_name="motor_speed",
                                                                             label_type="float", output_format="dense")
    data_transform_0.get_party_instance(role='host', party_id=hosts).component_param(with_label=False)

    intersection_0 = Intersection(name="intersection_0")
    hetero_linr_0 = HeteroLinR(name="hetero_linr_0", penalty="L2", optimizer="sgd", tol=0.001,
                               alpha=0.01, max_iter=20, early_stop="weight_diff", batch_size=-1,
                               learning_rate=0.15, decay=0.0, decay_sqrt=False,
                               init_param={"init_method": "zeros"},
                               encrypted_mode_calculator_param={"mode": "fast"})

    evaluation_0 = Evaluation(name="evaluation_0", eval_type="regression", pos_label=1)
    # evaluation_0.get_party_instance(role='host', party_id=hosts[0]).component_param(need_run=False)
    # evaluation_0.get_party_instance(role='host', party_id=hosts[1]).component_param(need_run=False)

    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
    pipeline.add_component(hetero_linr_0, data=Data(train_data=intersection_0.output.data))
    pipeline.add_component(evaluation_0, data=Data(data=hetero_linr_0.output.data))

    pipeline.compile()

    pipeline.fit()

    # predict
    # deploy required components
    pipeline.deploy_component([data_transform_0, intersection_0, hetero_linr_0])

    predict_pipeline = PipeLine()
    # add data reader onto predict pipeline
    predict_pipeline.add_component(reader_0)
    # add selected components from train pipeline onto predict pipeline
    # specify data source
    predict_pipeline.add_component(pipeline,
                                   data=Data(predict_input={pipeline.data_transform_0.input.data: reader_0.output.data}))
    # run predict model
    predict_pipeline.predict()
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    hosts = parties.host
    arbiter = parties.arbiter[0]

    guest_train_data = {"name": "motor_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = [{"name": "motor_hetero_host", "namespace": f"experiment{namespace}"},
                       {"name": "motor_hetero_host", "namespace": f"experiment{namespace}"}]

    pipeline = PipeLine().set_initiator(
        role='guest', party_id=guest).set_roles(
        guest=guest, host=hosts, arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=hosts[0]).component_param(table=host_train_data[0])
    reader_0.get_party_instance(role='host', party_id=hosts[1]).component_param(table=host_train_data[1])

    data_transform_0 = DataTransform(name="data_transform_0")

    data_transform_0.get_party_instance(
        role='guest',
        party_id=guest).component_param(
        with_label=True,
        label_name="motor_speed",
        label_type="float",
        output_format="dense")
    data_transform_0.get_party_instance(role='host', party_id=hosts).component_param(with_label=False)

    intersection_0 = Intersection(name="intersection_0")
    hetero_linr_0 = HeteroLinR(name="hetero_linr_0", penalty="None", optimizer="sgd", tol=0.001,
                               alpha=0.01, max_iter=20, early_stop="weight_diff", batch_size=-1,
                               learning_rate=0.15, decay=0.0, decay_sqrt=False,
                               init_param={"init_method": "zeros"},
                               cv_param={"n_splits": 5,
                                         "shuffle": False,
                                         "random_seed": 42,
                                         "need_cv": True
                                         }
                               )

    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
    pipeline.add_component(hetero_linr_0, data=Data(train_data=intersection_0.output.data))

    pipeline.compile()

    pipeline.fit()
Exemplo n.º 5
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    guest_train_data = {"name": "motor_hetero_mini_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "motor_hetero_mini_host", "namespace": f"experiment{namespace}"}

    pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0")
    data_transform_0.get_party_instance(role='guest', party_id=guest).component_param(with_label=True, output_format="dense",
                                                                                      label_name="motor_speed", label_type="float",)
    data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False)

    intersection_0 = Intersection(name="intersection_0")
    hetero_linr_0 = HeteroLinR(name="hetero_linr_0", early_stop="diff", max_iter=3,
                               penalty="None", optimizer="sgd", tol=0.001,
                               alpha=0.01, batch_size=-1, learning_rate=0.15,
                               decay=0.0, decay_sqrt=False,
                               init_param={"init_method": "zeros"},
                               encrypted_mode_calculator_param={"mode": "fast"},
                               stepwise_param={"score_name": "AIC", "direction": "backward",
                                               "need_stepwise": True, "max_step": 3, "nvmin": 2
                                               })
    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
    pipeline.add_component(hetero_linr_0, data=Data(train_data=intersection_0.output.data))

    pipeline.compile()

    pipeline.fit()
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    guest_train_data = {
        "name": "motor_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "motor_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    pipeline = PipeLine().set_initiator(
        role='guest', party_id=guest).set_roles(guest=guest,
                                                host=host,
                                                arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)
    reader_0.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0",
                                     output_format="sparse",
                                     missing_fill=True,
                                     outlier_replace=False)
    data_transform_0.get_party_instance(
        role='guest', party_id=guest).component_param(with_label=True,
                                                      label_name="motor_speed",
                                                      label_type="float")
    data_transform_0.get_party_instance(
        role='host', party_id=host).component_param(with_label=False)

    intersection_0 = Intersection(name="intersection_0")
    hetero_linr_0 = HeteroLinR(
        name="hetero_linr_0",
        penalty="L2",
        optimizer="sgd",
        tol=0.001,
        alpha=0.01,
        max_iter=2,
        early_stop="weight_diff",
        batch_size=100,
        learning_rate=0.15,
        decay=0.0,
        decay_sqrt=False,
        init_param={"init_method": "zeros"},
        encrypted_mode_calculator_param={"mode": "fast"})

    evaluation_0 = Evaluation(name="evaluation_0",
                              eval_type="regression",
                              pos_label=1)
    # evaluation_0.get_party_instance(role='host', party_id=host).component_param(need_run=False)

    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0,
                           data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0,
                           data=Data(data=data_transform_0.output.data))
    pipeline.add_component(hetero_linr_0,
                           data=Data(train_data=intersection_0.output.data))
    pipeline.add_component(evaluation_0,
                           data=Data(data=hetero_linr_0.output.data))

    pipeline.compile()

    pipeline.fit()
Exemplo n.º 7
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]
    backend = config.backend
    work_mode = config.work_mode

    guest_train_data = [{
        "name": "motor_hetero_guest",
        "namespace": f"experiment{namespace}"
    }, {
        "name": "motor_hetero_guest",
        "namespace": f"experiment{namespace}"
    }]
    host_train_data = [{
        "name": "motor_hetero_host",
        "namespace": f"experiment{namespace}"
    }, {
        "name": "motor_hetero_host",
        "namespace": f"experiment{namespace}"
    }]

    pipeline = PipeLine().set_initiator(
        role='guest', party_id=guest).set_roles(guest=guest,
                                                host=host,
                                                arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(
        role='guest',
        party_id=guest).algorithm_param(table=guest_train_data[0])
    reader_0.get_party_instance(
        role='host', party_id=host).algorithm_param(table=host_train_data[0])

    reader_1 = Reader(name="reader_1")
    reader_1.get_party_instance(
        role='guest',
        party_id=guest).algorithm_param(table=guest_train_data[1])
    reader_1.get_party_instance(
        role='host', party_id=host).algorithm_param(table=host_train_data[1])

    dataio_0 = DataIO(name="dataio_0")
    dataio_1 = DataIO(name="dataio_1")

    dataio_0.get_party_instance(role='guest', party_id=guest).algorithm_param(
        with_label=True,
        label_name="motor_speed",
        label_type="float",
        output_format="dense")
    dataio_0.get_party_instance(
        role='host', party_id=host).algorithm_param(with_label=False)

    dataio_1.get_party_instance(role='guest', party_id=guest).algorithm_param(
        with_label=True,
        label_name="motor_speed",
        label_type="float",
        output_format="dense")
    dataio_1.get_party_instance(
        role='host', party_id=host).algorithm_param(with_label=False)

    intersection_0 = Intersection(name="intersection_0")
    intersect_1 = Intersection(name="intersection_1")

    hetero_linr_0 = HeteroLinR(
        name="hetero_linr_0",
        penalty="L2",
        optimizer="sgd",
        tol=0.001,
        alpha=0.01,
        max_iter=20,
        early_stop="weight_diff",
        batch_size=-1,
        learning_rate=0.15,
        decay=0.0,
        decay_sqrt=False,
        init_param={"init_method": "zeros"},
        encrypted_mode_calculator_param={"mode": "fast"},
        validation_freqs=1,
        early_stopping_rounds=5,
        metrics=["mean_absolute_error", "root_mean_squared_error"],
        use_first_metric_only=False)

    pipeline.add_component(reader_0)
    pipeline.add_component(reader_1)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(dataio_1,
                           data=Data(data=reader_1.output.data),
                           model=Model(dataio_0.output.model))

    pipeline.add_component(intersection_0,
                           data=Data(data=dataio_0.output.data))
    pipeline.add_component(intersect_1, data=Data(data=dataio_1.output.data))

    pipeline.add_component(hetero_linr_0,
                           data=Data(train_data=intersection_0.output.data,
                                     validate_data=intersect_1.output.data))

    pipeline.compile()

    pipeline.fit(backend=backend, work_mode=work_mode)
Exemplo n.º 8
0
def main(config="../../config.yaml", param="./linr_config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]
    backend = config.backend
    work_mode = config.work_mode

    if isinstance(param, str):
        param = JobConfig.load_from_file(param)
    """
    guest = 9999
    host = 10000
    arbiter = 9999
    backend = 0
    work_mode = 1
    param = {"penalty": "L2", "max_iter": 5}
    """

    guest_train_data = {
        "name": "motor_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "motor_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    # initialize pipeline
    pipeline = PipeLine()
    # set job initiator
    pipeline.set_initiator(role='guest', party_id=guest)
    # set participants information
    pipeline.set_roles(guest=guest, host=host, arbiter=arbiter)

    # define Reader components to read in data
    reader_0 = Reader(name="reader_0")
    # configure Reader for guest
    reader_0.get_party_instance(
        role='guest', party_id=guest).algorithm_param(table=guest_train_data)
    # configure Reader for host
    reader_0.get_party_instance(
        role='host', party_id=host).algorithm_param(table=host_train_data)

    # define DataIO components
    dataio_0 = DataIO(name="dataio_0")  # start component numbering at 0

    # get DataIO party instance of guest
    dataio_0_guest_party_instance = dataio_0.get_party_instance(role='guest',
                                                                party_id=guest)
    # configure DataIO for guest
    dataio_0_guest_party_instance.algorithm_param(
        with_label=True,
        output_format="dense",
        label_name=param["label_name"],
        label_type="float")
    # get and configure DataIO party instance of host
    dataio_0.get_party_instance(
        role='host', party_id=host).algorithm_param(with_label=False)

    # define Intersection component
    intersection_0 = Intersection(name="intersection_0")

    param = {
        "penalty": param["penalty"],
        "validation_freqs": None,
        "early_stopping_rounds": None,
        "max_iter": param["max_iter"],
        "optimizer": param["optimizer"],
        "learning_rate": param["learning_rate"],
        "init_param": param["init_param"],
        "batch_size": param["batch_size"],
        "alpha": param["alpha"]
    }

    hetero_linr_0 = HeteroLinR(name='hetero_linr_0', **param)

    evaluation_0 = Evaluation(name='evaluation_0',
                              eval_type="regression",
                              metrics=[
                                  "r2_score", "mean_squared_error",
                                  "root_mean_squared_error",
                                  "explained_variance"
                              ])

    # add components to pipeline, in order of task execution
    pipeline.add_component(reader_0)
    pipeline.add_component(dataio_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0,
                           data=Data(data=dataio_0.output.data))
    pipeline.add_component(hetero_linr_0,
                           data=Data(train_data=intersection_0.output.data))
    pipeline.add_component(evaluation_0,
                           data=Data(data=hetero_linr_0.output.data))

    # compile pipeline once finished adding modules, this step will form conf and dsl files for running job
    pipeline.compile()

    # fit model
    pipeline.fit(backend=backend, work_mode=work_mode)

    metric_summary = pipeline.get_component("evaluation_0").get_summary()
    data_summary = {
        "train": {
            "guest": guest_train_data["name"],
            "host": host_train_data["name"]
        },
        "test": {
            "guest": guest_train_data["name"],
            "host": host_train_data["name"]
        }
    }
    return data_summary, metric_summary
Exemplo n.º 9
0
def main(config="../../config.yaml", param="./linr_config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    if isinstance(param, str):
        param = JobConfig.load_from_file(param)

    guest_train_data = {"name": "motor_hetero_guest", "namespace": f"experiment{namespace}"}
    host_train_data = {"name": "motor_hetero_host", "namespace": f"experiment{namespace}"}

    # initialize pipeline
    pipeline = PipeLine()
    # set job initiator
    pipeline.set_initiator(role='guest', party_id=guest)
    # set participants information
    pipeline.set_roles(guest=guest, host=host, arbiter=arbiter)

    # define Reader components to read in data
    reader_0 = Reader(name="reader_0")
    # configure Reader for guest
    reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
    # configure Reader for host
    reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)

    # define DataTransform components
    data_transform_0 = DataTransform(name="data_transform_0")  # start component numbering at 0

    # get DataTransform party instance of guest
    data_transform_0_guest_party_instance = data_transform_0.get_party_instance(role='guest', party_id=guest)
    # configure DataTransform for guest
    data_transform_0_guest_party_instance.component_param(with_label=True, output_format="dense",
                                                          label_name=param["label_name"], label_type="float")
    # get and configure DataTransform party instance of host
    data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False)

    # define Intersection component
    intersection_0 = Intersection(name="intersection_0")

    param = {
        "penalty": param["penalty"],
        "max_iter": param["max_iter"],
        "optimizer": param["optimizer"],
        "learning_rate": param["learning_rate"],
        "init_param": param["init_param"],
        "batch_size": param["batch_size"],
        "alpha": param["alpha"]
    }

    hetero_linr_0 = HeteroLinR(name='hetero_linr_0', **param)
    hetero_linr_1 = HeteroLinR(name='hetero_linr_1')

    evaluation_0 = Evaluation(name='evaluation_0', eval_type="regression",
                              metrics=["r2_score",
                                       "mean_squared_error",
                                       "root_mean_squared_error",
                                       "explained_variance"])

    # add components to pipeline, in order of task execution
    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
    pipeline.add_component(hetero_linr_0, data=Data(train_data=intersection_0.output.data))
    pipeline.add_component(hetero_linr_1, data=Data(test_data=intersection_0.output.data),
                           model=Model(hetero_linr_0.output.model))
    pipeline.add_component(evaluation_0, data=Data(data=hetero_linr_0.output.data))

    # compile pipeline once finished adding modules, this step will form conf and dsl files for running job
    pipeline.compile()

    # fit model
    pipeline.fit()

    metric_summary = parse_summary_result(pipeline.get_component("evaluation_0").get_summary())

    data_linr_0 = extract_data(pipeline.get_component("hetero_linr_0").get_output_data().get("data"), "predict_result")
    data_linr_1 = extract_data(pipeline.get_component("hetero_linr_1").get_output_data().get("data"), "predict_result")
    desc_linr_0 = regression_metric.Describe().compute(data_linr_0)
    desc_linr_1 = regression_metric.Describe().compute(data_linr_1)

    metric_summary["script_metrics"] = {"linr_train": desc_linr_0,
                                        "linr_validate": desc_linr_1}

    data_summary = {"train": {"guest": guest_train_data["name"], "host": host_train_data["name"]},
                    "test": {"guest": guest_train_data["name"], "host": host_train_data["name"]}
                    }
    return data_summary, metric_summary
Exemplo n.º 10
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    guest_train_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "breast_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    pipeline = PipeLine().set_initiator(
        role='guest', party_id=guest).set_roles(guest=guest,
                                                host=host,
                                                arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    reader_1 = Reader(name="reader_1")
    reader_1.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_1.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    reader_2 = Reader(name="reader_2")
    reader_2.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_2.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0")
    data_transform_0.get_party_instance(
        role='guest', party_id=guest).component_param(with_label=True,
                                                      missing_fill=True,
                                                      outlier_replace=True)
    data_transform_0.get_party_instance(
        role='host', party_id=host).component_param(with_label=False,
                                                    missing_fill=True,
                                                    outlier_replace=True)
    data_transform_1 = DataTransform(name="data_transform_1")
    data_transform_2 = DataTransform(name="data_transform_2")

    intersection_0 = Intersection(name="intersection_0")
    intersection_1 = Intersection(name="intersection_1")
    intersection_2 = Intersection(name="intersection_2")

    union_0 = Union(name="union_0")

    federated_sample_0 = FederatedSample(name="federated_sample_0",
                                         mode="stratified",
                                         method="downsample",
                                         fractions=[[0, 1.0], [1, 1.0]])

    feature_scale_0 = FeatureScale(name="feature_scale_0")
    feature_scale_1 = FeatureScale(name="feature_scale_1")

    hetero_feature_binning_0 = HeteroFeatureBinning(
        name="hetero_feature_binning_0")
    hetero_feature_binning_1 = HeteroFeatureBinning(
        name="hetero_feature_binning_1")

    hetero_feature_selection_0 = HeteroFeatureSelection(
        name="hetero_feature_selection_0")
    hetero_feature_selection_1 = HeteroFeatureSelection(
        name="hetero_feature_selection_1")

    one_hot_0 = OneHotEncoder(name="one_hot_0")
    one_hot_1 = OneHotEncoder(name="one_hot_1")

    hetero_lr_0 = HeteroLR(name="hetero_lr_0",
                           penalty="L2",
                           optimizer="rmsprop",
                           tol=1e-5,
                           init_param={"init_method": "random_uniform"},
                           alpha=0.01,
                           max_iter=3,
                           early_stop="diff",
                           batch_size=320,
                           learning_rate=0.15)
    hetero_lr_1 = HeteroLR(name="hetero_lr_1")
    hetero_lr_2 = HeteroLR(name="hetero_lr_2",
                           penalty="L2",
                           optimizer="rmsprop",
                           tol=1e-5,
                           init_param={"init_method": "random_uniform"},
                           alpha=0.01,
                           max_iter=3,
                           early_stop="diff",
                           batch_size=320,
                           learning_rate=0.15,
                           cv_param={
                               "n_splits": 5,
                               "shuffle": True,
                               "random_seed": 103,
                               "need_cv": True
                           })

    hetero_sshe_lr_0 = HeteroSSHELR(
        name="hetero_sshe_lr_0",
        reveal_every_iter=True,
        reveal_strategy="respectively",
        penalty="L2",
        optimizer="rmsprop",
        tol=1e-5,
        batch_size=320,
        learning_rate=0.15,
        init_param={"init_method": "random_uniform"},
        alpha=0.01,
        max_iter=3)
    hetero_sshe_lr_1 = HeteroSSHELR(name="hetero_sshe_lr_1")

    local_baseline_0 = LocalBaseline(name="local_baseline_0",
                                     model_name="LogisticRegression",
                                     model_opts={
                                         "penalty": "l2",
                                         "tol": 0.0001,
                                         "C": 1.0,
                                         "fit_intercept": True,
                                         "solver": "lbfgs",
                                         "max_iter": 5,
                                         "multi_class": "ovr"
                                     })
    local_baseline_0.get_party_instance(
        role='guest', party_id=guest).component_param(need_run=True)
    local_baseline_0.get_party_instance(
        role='host', party_id=host).component_param(need_run=False)
    local_baseline_1 = LocalBaseline(name="local_baseline_1")

    hetero_secureboost_0 = HeteroSecureBoost(name="hetero_secureboost_0",
                                             num_trees=3)
    hetero_secureboost_1 = HeteroSecureBoost(name="hetero_secureboost_1")
    hetero_secureboost_2 = HeteroSecureBoost(name="hetero_secureboost_2",
                                             num_trees=3,
                                             cv_param={
                                                 "shuffle": False,
                                                 "need_cv": True
                                             })

    hetero_linr_0 = HeteroLinR(name="hetero_linr_0",
                               penalty="L2",
                               optimizer="sgd",
                               tol=0.001,
                               alpha=0.01,
                               max_iter=3,
                               early_stop="weight_diff",
                               batch_size=-1,
                               learning_rate=0.15,
                               decay=0.0,
                               decay_sqrt=False,
                               init_param={"init_method": "zeros"},
                               floating_point_precision=23)
    hetero_linr_1 = HeteroLinR(name="hetero_linr_1")

    hetero_sshe_linr_0 = HeteroSSHELinR(name="hetero_sshe_linr_0",
                                        max_iter=5,
                                        early_stop="weight_diff",
                                        batch_size=-1)
    hetero_sshe_linr_1 = HeteroSSHELinR(name="hetero_sshe_linr_1")

    hetero_poisson_0 = HeteroPoisson(name="hetero_poisson_0",
                                     early_stop="weight_diff",
                                     max_iter=10,
                                     alpha=100.0,
                                     batch_size=-1,
                                     learning_rate=0.01,
                                     optimizer="rmsprop",
                                     exposure_colname="exposure",
                                     decay_sqrt=False,
                                     tol=0.001,
                                     init_param={"init_method": "zeros"},
                                     penalty="L2")
    hetero_poisson_1 = HeteroPoisson(name="hetero_poisson_1")

    hetero_sshe_poisson_0 = HeteroSSHEPoisson(name="hetero_sshe_poisson_0",
                                              max_iter=5)
    hetero_sshe_poisson_1 = HeteroSSHEPoisson(name="hetero_sshe_poisson_1")

    evaluation_0 = Evaluation(name="evaluation_0")
    evaluation_1 = Evaluation(name="evaluation_1")
    evaluation_2 = Evaluation(name="evaluation_2")

    pipeline.add_component(reader_0)
    pipeline.add_component(reader_1)
    pipeline.add_component(reader_2)

    pipeline.add_component(data_transform_0,
                           data=Data(data=reader_0.output.data))
    pipeline.add_component(data_transform_1,
                           data=Data(data=reader_1.output.data),
                           model=Model(model=data_transform_0.output.model))
    pipeline.add_component(data_transform_2,
                           data=Data(data=reader_2.output.data),
                           model=Model(model=data_transform_0.output.model))

    pipeline.add_component(intersection_0,
                           data=Data(data=data_transform_0.output.data))
    pipeline.add_component(intersection_1,
                           data=Data(data=data_transform_1.output.data))
    pipeline.add_component(intersection_2,
                           data=Data(data=data_transform_2.output.data))

    pipeline.add_component(
        union_0,
        data=Data(
            data=[intersection_0.output.data, intersection_2.output.data]))

    pipeline.add_component(federated_sample_0,
                           data=Data(data=intersection_1.output.data))

    pipeline.add_component(feature_scale_0,
                           data=Data(data=union_0.output.data))
    pipeline.add_component(feature_scale_1,
                           data=Data(data=federated_sample_0.output.data),
                           model=Model(model=feature_scale_0.output.model))

    pipeline.add_component(hetero_feature_binning_0,
                           data=Data(data=feature_scale_0.output.data))
    pipeline.add_component(
        hetero_feature_binning_1,
        data=Data(data=feature_scale_1.output.data),
        model=Model(model=hetero_feature_binning_0.output.model))

    pipeline.add_component(
        hetero_feature_selection_0,
        data=Data(data=hetero_feature_binning_0.output.data))
    pipeline.add_component(
        hetero_feature_selection_1,
        data=Data(data=hetero_feature_binning_1.output.data),
        model=Model(model=hetero_feature_selection_0.output.model))

    pipeline.add_component(
        one_hot_0, data=Data(data=hetero_feature_selection_0.output.data))
    pipeline.add_component(
        one_hot_1,
        data=Data(data=hetero_feature_selection_1.output.data),
        model=Model(model=one_hot_0.output.model))

    pipeline.add_component(hetero_lr_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(hetero_lr_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=hetero_lr_0.output.model))
    pipeline.add_component(hetero_lr_2,
                           data=Data(train_data=one_hot_0.output.data))

    pipeline.add_component(local_baseline_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(local_baseline_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=local_baseline_0.output.model))

    pipeline.add_component(hetero_sshe_lr_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(hetero_sshe_lr_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=hetero_sshe_lr_0.output.model))

    pipeline.add_component(hetero_secureboost_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(
        hetero_secureboost_1,
        data=Data(test_data=one_hot_1.output.data),
        model=Model(model=hetero_secureboost_0.output.model))
    pipeline.add_component(hetero_secureboost_2,
                           data=Data(train_data=one_hot_0.output.data))

    pipeline.add_component(hetero_linr_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(hetero_linr_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=hetero_linr_0.output.model))

    pipeline.add_component(hetero_sshe_linr_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(hetero_sshe_linr_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=hetero_sshe_linr_0.output.model))

    pipeline.add_component(hetero_poisson_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(hetero_poisson_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=hetero_poisson_0.output.model))

    pipeline.add_component(
        evaluation_0,
        data=Data(data=[
            hetero_lr_0.output.data, hetero_lr_1.output.data,
            hetero_sshe_lr_0.output.data, hetero_sshe_lr_1.output.data,
            local_baseline_0.output.data, local_baseline_1.output.data
        ]))

    pipeline.add_component(hetero_sshe_poisson_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(
        hetero_sshe_poisson_1,
        data=Data(test_data=one_hot_1.output.data),
        model=Model(model=hetero_sshe_poisson_0.output.model))

    pipeline.add_component(
        evaluation_1,
        data=Data(data=[
            hetero_linr_0.output.data, hetero_linr_1.output.data,
            hetero_sshe_linr_0.output.data, hetero_linr_1.output.data
        ]))
    pipeline.add_component(
        evaluation_2,
        data=Data(data=[
            hetero_poisson_0.output.data, hetero_poisson_1.output.data,
            hetero_sshe_poisson_0.output.data,
            hetero_sshe_poisson_1.output.data
        ]))

    pipeline.compile()

    pipeline.fit()

    print(pipeline.get_component("evaluation_0").get_summary())
    print(pipeline.get_component("evaluation_1").get_summary())
    print(pipeline.get_component("evaluation_2").get_summary())